Question

In: Math

1. F=xi+yj+ (xz+yz)k, and Sis the part ofx+y+z= 1 in the first octant, oriented upwards. Compute∫∫Scurl(F)·dSdirectly....

1. F=xi+yj+ (xz+yz)k, and Sis the part ofx+y+z= 1 in the first octant, oriented upwards. Compute∫∫Scurl(F)·dSdirectly.

2. Compute∫CF·drdirectly (3 curves to parameterize).

Solutions

Expert Solution


Related Solutions

Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )
Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )over the path C consisting of line segments joining (1,1,1) to (1,1,2), (1, 1, 2) to (1, 3, 2), and (1, 3, 2) to (4, 3, 2) in 3 different ways, along the given path, along the line from (1,1,1) to (4,3,2), and finally by finding an anti-derivative, f, for F.
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 14z) k C is the line segment from (3, 0, −1) to (6, 4, 2) (a) Find a function f such that F = ∇f. f(x, y, z) = (b) Use part (a) to evaluate C ∇f · dr along the given curve C.
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 14z) k C is the line segment from (3, 0, −3) to (5, 5, 1) (a) Find a function f such that F = ∇f. f(x, y, z) = (b) Use part (a) to evaluate C ∇f · dr along the given curve C.
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists...
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists of the line segment from (2,4,-1) to (1,-1,3).
The vector field given by E (x,y,z) = (yz – 2x) x + xz y +...
The vector field given by E (x,y,z) = (yz – 2x) x + xz y + xy z may represent an electrostatic field? Why? If so, finding the potential F a from which E may be obtained.
Let⇀F(x,y) =xi+yj/(e^(x^2+y^2))−1. Let C be a positively oriented simple closed path that encloses the origin. (a)...
Let⇀F(x,y) =xi+yj/(e^(x^2+y^2))−1. Let C be a positively oriented simple closed path that encloses the origin. (a) Show that∫F·Tds= 0. (b) Is it true that ∫F·Tds= 0 for any positively oriented simple closed path that does not pass through or enclose the origin? Justify your response completely.
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
Determine the centroid C(x,y,z) of the solid formed in the first octant bounded by z=16-y and...
Determine the centroid C(x,y,z) of the solid formed in the first octant bounded by z=16-y and x^2=z.
The electrical voltage in a certain region of space is given by the function V(x,y,z)=80+xz−sin⁡(yz). If...
The electrical voltage in a certain region of space is given by the function V(x,y,z)=80+xz−sin⁡(yz). If the directional derivative of V at (1,1,π) in the direction 〈a,−1,π〉 is π, what is the value of a? Group of answer choices π22 −π22 π2 −π2 None of the above.
Determine the centroid C(x,y,z) of the solid formed in the first octant bounded by z+y-16=0 and...
Determine the centroid C(x,y,z) of the solid formed in the first octant bounded by z+y-16=0 and 2x^2-32+2y=0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT