In: Chemistry
The normal boiling point for acetone is 56.5°C. At an elevation
of 5700 ft, the atmospheric pressure is 623 torr. What would be the
boiling point of acetone (ΔHvap = 32.0 kJ/mol)
at this elevation?
_____ °C
What would be the vapor pressure of acetone at 25.0°C at this
elevation?
_____ torr
We know, normal atmospheric pressure = 1 atm = 760 torr. So P1 = 760 torr
Given, P2 = 623 torr , T1 = 56.50C = (56.5+273)K = 329.5 K and H = 32.0 KJ/mol = 32000 J/mol
Now, from Clasius-Clapeyron equation we have,
ln (P1 /P2) = (H/R) ( 1/T2 - 1/T1)
=> ln(760 torr/ 623 torr) = (32000 J/mol / 8.314 J/k.mol) ( 1/T2 - 1/329.5 K)
=> ln(1.2199036392) = 3848.929516 (329.5 -T2 / T2 x 329.5)
=> 0.1987719146( T2 x 329.5) = 1268222.276-3848.929516T2
=> 0.1987719146 T2 x 65.49534586 = 1268222.276 - 3848.929516T2
=> 13.01863529T2 + 3848.929516 T2 = 1268222.276
=> 3861.948151 T2 = 1268222.276
=> T2 =(1268222.276/3861.948151) K
=> T2 = 328.4 K = (328.4-273)0C = 55.4 0C
Hence, boiling point of acetone = 55.4 0C.
Again, we know the boiling point of acetone at this elevation so we can figure the vapor pressure as:
We need to find P1 here.
Here T2 = 25.00C = (25+273)K = 298 K
ln (P1 /P2) = (H/R) ( 1/T2 - 1/T1)
=> ln (P1 /623) = (32000 J/mol / 8.314 J/k.mol) ( 1/298 K - 1/329.5 K)
=> ln (P1 /623) = 3848.929516 ( 329.5-298/ 298 x 329.5)
=> ln (P1 /623) = 3848.929516 x ( 31.5 / 98191)
=> ln (P1 /623) =121241.2798/98191
=> ln (P1 /623) =1.234749414
=> P1 / 623 = e-1.234749414
=> P1 / 623 = 0.2909076506
=> P1 = 623 x 0.2909076506 torr = 181.2354663 torr = 181 torr
Hence vapor pressure of acetone at 25.00C = 181 torr