Question

In: Statistics and Probability

(1 point) Let ?1 and ?2 have Poisson distributions with the same average rate λ =...

(1 point) Let ?1 and ?2 have Poisson distributions with the same average rate λ = 0.6 on independent time intervals of length 1 and 3 respectively. Find Prob(?1+?2=3) to at least 6 decimal places.

Solutions

Expert Solution


Related Solutions

Show that the skewness of X~Poisson(λ) is λ^-(1/2)
Show that the skewness of X~Poisson(λ) is λ^-(1/2)
Find the joint pdf of the random sampleY1,...,Yn from the following distributions: a. Poisson(λ). b.N(0,σ^2).
Find the joint pdf of the random sampleY1,...,Yn from the following distributions: a. Poisson(λ). b.N(0,σ^2).
(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ...
(a) Let Λ = {λ ∈ R : 0 < λ < 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively. (b) Let Λ = \ {λ ∈ R : λ > 1}. For each λ ∈ Λ, let Aλ = {x ∈ R : −λ < x < 1/λ}. Find U λ∈Λ Aλ and ~U λ∈Λ Aλ respectively.
Determine the Maximum Likelihood Estimator for; 1. λ for the Poisson distribution. 2. θ for the...
Determine the Maximum Likelihood Estimator for; 1. λ for the Poisson distribution. 2. θ for the Exponential distribution. Caveat: These are examples of distributions for which the MLE can be found analytically in terms of the data x1, . . . , xn and so no advanced computational methods are required and also in each assume a random sample of size n, x1, x2, . . . , xn
Question: (Bayesian) Suppose that X is Poisson(λ + 1), and the prior distribution of λ is...
Question: (Bayesian) Suppose that X is Poisson(λ + 1), and the prior distribution of λ is binomial(2,1/3). (a) Find the Bayesian estimate of λ for mean square loss based on the single observation X, if X = 1. (b) Find the Bayesian estimate of λ for mean square loss based on the single observation X, if X = 2 Hints: Because of its prior distribution, λ can take only three values, 0,1,2. Don’t expect its posterior distribution to be any...
Let Y denote a random variable that has a Poisson distribution with mean λ = 6....
Let Y denote a random variable that has a Poisson distribution with mean λ = 6. (Round your answers to three decimal places.) (a) Find P(Y = 9). (b) Find P(Y ≥ 9). (c) Find P(Y < 9). (d) Find P(Y ≥ 9|Y ≥ 6).
At a train station, international trains arrive at a rate λ = 1. At the same...
At a train station, international trains arrive at a rate λ = 1. At the same train station national trains arrive at rate λ = 2. The two trains are independent. What is the probability that the first international train arrives before the third national train?
Starting at time 0, a red bulb flashes according to a Poisson process with rate λ=1....
Starting at time 0, a red bulb flashes according to a Poisson process with rate λ=1. Similarly, starting at time 0, a blue bulb flashes according to a Poisson process with rate λ=2, but only until a nonnegative random time X, at which point the blue bulb “dies." We assume that the two Poisson processes and the random variable X are (mutually) independent. a) Suppose that X is equal to either 1 or 2, with equal probability. Write down an...
Emails arrive in an inbox according to a Poisson process with rate λ (so the number...
Emails arrive in an inbox according to a Poisson process with rate λ (so the number of emails in a time interval of length t is distributed as Pois(λt), and the numbers of emails arriving in disjoint time intervals are independent). Let X, Y, Z be the numbers of emails that arrive from 9 am to noon, noon to 6 pm, and 6 pm to midnight (respectively) on a certain day. (a) Find the joint PMF of X, Y, Z....
2. Let X ~ Pois (λ) λ > 0 a. Show explicitly that this family is...
2. Let X ~ Pois (λ) λ > 0 a. Show explicitly that this family is “very regular,” that is, that R0,R1,R2,R3,R4 hold. R 0 - different parameter values have different functions. R1 - parameter space does not contain its own endpoints. R 2. - the set of points x where f (x, λ) is not zero and should not depend on λ . R 3. One derivative can be found with respect to λ. R 4. Two derivatives can...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT