Question

In: Math

(2x−y3−yex)dx=(2+ex+3xy2 )dy, y(0)=2. Solve the initial value problem and verify exact.

(2x−y3−yex)dx=(2+ex+3xy2 )dy, y(0)=2.

Solve the initial value problem and verify exact.

Solutions

Expert Solution

We solve the given initial value problem by using the initial condition. Then we show that the given differential equation is exact.


Related Solutions

Solve the initial value problem dy/dx = −(2x cos(x^2))y + 6(x^2)e^(− sin(x^2)) , y(0) = −5...
Solve the initial value problem dy/dx = −(2x cos(x^2))y + 6(x^2)e^(− sin(x^2)) , y(0) = −5 Solve the initial value problem dy/dt = (6t^5/(1 + t^6))y + 7(1 + t^6)^2 , y(1) = 8. Find the general solution of dy/dt = (2/t)*y + 3t^2* cos3t
Solve the following initial-value problem: (ye2xy + x)dx − (y2 − xe2xy)dy = 0, y(2) =...
Solve the following initial-value problem: (ye2xy + x)dx − (y2 − xe2xy)dy = 0, y(2) = 0
Solve the initial value problem dy/dx + H(x)y = e5x ; y(0) = 2 where H(x)...
Solve the initial value problem dy/dx + H(x)y = e5x ; y(0) = 2 where H(x) = −1 0 ≤ x ≤ 3 1 3 < x
Solve the following initial value problem d2y/dx2−6dy/dx+25y=0,y(0)=0, dy/dx(0)=1.
Solve the following initial value problem d2y/dx2−6dy/dx+25y=0,y(0)=0, dy/dx(0)=1.
Solve ODE (3x - 2y + 1)dx + (-2x + y + 2)dy = 0 with...
Solve ODE (3x - 2y + 1)dx + (-2x + y + 2)dy = 0 with the method of x =u + h and y = v + k
Solve the given initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
Solve the given initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1
Solve by separation variables (2x-5y-2)dx+(5x-y-5)dy=0
Solve by separation variables (2x-5y-2)dx+(5x-y-5)dy=0
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0)...
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0) = 0, y(0) = 0
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation dy/dx=(10+16x)/xy^2 ; x>0 with the initial condition y(1)=2 y= C) Find the solution to the differential equation dy/dt=0.2(y−150) if y=30 when t=0 y=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT