In: Accounting
A profit-maximizing firm in a perfectly competitive market operates in the short run with total fixed costs of $6,500.00 and total variable costs (TVC) as is below. The firm can only produce integer amounts of output (Q)
Q |
TVC |
0 |
0.00 |
1 |
8,000.00 |
2 |
15,000.00 |
3 |
20,000.00 |
4 |
23,000.00 |
5 |
25,000.00 |
6 |
29,000.00 |
7 |
33,500.00 |
8 |
39,000.00 |
9 |
46,000.00 |
10 |
53,500.00 |
11 |
61,200.00 |
12 |
72,000.00 |
_______3. (2.5 pts.) How much output should the firm produce if it can sell all the output it produces at a price of $6,000 per unit?
Answer is 8 units | |||||||
Qty = Quantity | |||||||
TVC = Total Variable Cost | |||||||
per U = Per Unit | |||||||
FC = Fixed Cost | |||||||
TC = Total Cost | |||||||
SP = Selling Price | |||||||
Qty (a) | TVC (b) | TVC per U (c = b/a) | FC (d) | TC (e = b+d) | TC per U (f = e/a) | SP (g) | Profit (g-f) |
1 | 8,000.00 | 8,000.00 | 6,500.00 | 14,500.00 | 14,500.00 | 6,000.00 | (8,500.00) |
2 | 15,000.00 | 7,500.00 | 6,500.00 | 21,500.00 | 10,750.00 | 6,000.00 | (4,750.00) |
3 | 20,000.00 | 6,666.67 | 6,500.00 | 26,500.00 | 8,833.33 | 6,000.00 | (2,833.33) |
4 | 23,000.00 | 5,750.00 | 6,500.00 | 29,500.00 | 7,375.00 | 6,000.00 | (1,375.00) |
5 | 25,000.00 | 5,000.00 | 6,500.00 | 31,500.00 | 6,300.00 | 6,000.00 | (300.00) |
6 | 29,000.00 | 4,833.33 | 6,500.00 | 35,500.00 | 5,916.67 | 6,000.00 | 83.33 |
7 | 33,500.00 | 4,785.71 | 6,500.00 | 40,000.00 | 5,714.29 | 6,000.00 | 285.71 |
8 | 39,000.00 | 4,875.00 | 6,500.00 | 45,500.00 | 5,687.50 | 6,000.00 | 312.50 |
9 | 46,000.00 | 5,111.11 | 6,500.00 | 52,500.00 | 5,833.33 | 6,000.00 | 166.67 |
10 | 53,500.00 | 5,350.00 | 6,500.00 | 60,000.00 | 6,000.00 | 6,000.00 | - |
11 | 61,200.00 | 5,563.64 | 6,500.00 | 67,700.00 | 6,154.55 | 6,000.00 | (154.55) |
12 | 72,000.00 | 6,000.00 | 6,500.00 | 78,500.00 | 6,541.67 | 6,000.00 | (541.67) |
The company will get maximum profot of $ 312.50 per unit, if the company produces 8 units and sells it. | |||||||
This is the maximum profit company can earn for the above unit of productions. | |||||||
So, the output must be 8 Units for the maximum profit. |