In: Finance
you have been given the expected return data shown in the first table on three
assetslong dash—F,
G, and
H long dash—over
the period 2016-2019:
Expected Return |
|||||||
Year |
Asset F |
Asset G |
Asset H |
||||
2016 |
16% |
17% |
|
14% |
|
||
2017 |
17% |
16% |
15% |
||||
2018 |
18% |
15% |
16% |
||||
2019 |
19% |
14% |
17% |
Using these assets, you have isolated the three investment alternatives shown in the following table
Alternative |
Investment |
|
1 |
100% of asset F |
|
2 |
50% of asset F and 50% of asset G |
|
3 |
50% of asset F and 50% of asset H |
Calculate the standard deviation of returns over the 4-year period for each of the three alternatives
Standard Deviation | |||||
Year | Asset F | Deviation | Deviation2 | ||
2016 | 16 | -1.5 | 2.25 | ||
2017 | 17 | -0.5 | 0.25 | ||
2018 | 18 | 0.5 | 0.25 | ||
2019 | 19 | 1.5 | 2.25 | ||
70 | 5 | ||||
Average Expected Return= | 17.5 | ||||
Standard Deviation | =SQRT(Deviation)2 | ||||
2.236068 | |||||
Year | Asset G | Deviation | Deviation | ||
2016 | 17 | 1.5 | 2.25 | ||
2017 | 16 | 0.5 | 0.25 | ||
2018 | 15 | -0.5 | 0.25 | ||
2019 | 14 | -1.5 | 2.25 | ||
62 | 5 | ||||
Average Expected Return= | 15.5 | ||||
Standard Deviation | 2.236068 | ||||
Year | Asset H | Deviation | Deviation | ||
2016 | 14 | -1.5 | 2.25 | ||
2017 | 15 | -0.5 | 0.25 | ||
2018 | 16 | 0.5 | 0.25 | ||
2019 | 17 | 1.5 | 2.25 | ||
62 | 5 | ||||
Average Expected Return= | 15.5 | ||||
Standard Deviation | 2.236068 | ||||
Alternative 1 | |||||||||
100% of asset F | |||||||||
Standard Deviation= | Standard Deviation of F | ||||||||
2.236068 | |||||||||
Alternative 2 | |||||||||
50% of asset F and 50% of asset G | |||||||||
Standard Deviation= | Standard Deviation of F* weights of F+ Standard Deviation of G * Weights of G | ||||||||
2.236068 | |||||||||
Alternative 3 | |||||||||
50% of asset H and 50% of asset G | |||||||||
Standard Deviation= | Standard Deviation of H* weights of H+ Standard Deviation of G * Weights of G | ||||||||
2.236068 |