In: Statistics and Probability
According to the National Center for Health Statistics (2014), p
= 0.21 of adults are smokers. Assume the population is the U.S.
adult population of N = 235,224,016. A random sample of n = 450
adults is obtained.
a. Describe the Distribution of the Sample Proportion, ?̂ , in
terms of shape, center and spread, for the proportion of U.S.
adults who smoke (3 pts):
• Shape: np(1-p) ≥ 10
• Center: ??̂
• Spread: ??̂ = √?̂(1−?̂)?
b. In a random sample of n = 450 adults, what is the probability of
obtaining a sample proportion of smokers, ?̂ ≤ 0.18 (2 pts)?
c. In a random sample of n = 450 adults, what is the probability of
obtaining a sample proportion of smokers, ?̂ ≥ 0.22 (3 pts)?
a)
Shape: np(1-p) ≥ 10 , normally distributed
• Center: ??̂ = 0.21
• Spread: ??̂ = √?̂(1−?̂)? = 0.019
b)
population proportion ,p=   0.21  
           
           
n=   450   94.5      
           
   
          
           
       
std error , SE = √( p(1-p)/n ) =    0.019  
           
           
          
           
       
sample proportion , p̂ =   0.18  
           
           
Z=( p̂ - p )/SE= (   0.180   -  
0.21   ) /    0.019   =  
-1.562  
P ( p̂ <    0.180   ) =P(Z<( p̂ - p )/SE)
=          
           
          
           
       
=P(Z <    -1.562   ) =   
0.0591          
        (answer)
excel formula for probability from z score is
=NORMSDIST(Z)          
           
       
c)
population proportion ,p=   0.21  
           
       
n=   450      
           
   
          
           
   
std error , SE = √( p(1-p)/n ) =    0.0192
          
           
   
sample proportion , p̂ =   0.22  
           
       
Z=( p̂ - p )/SE= (   0.22   -  
0.21   ) /    0.0192   =  
0.521
P ( p̂ >    0.22   ) =P(Z > ( p̂ - p
)/SE) =          
       
          
           
   
=P(Z >   0.521   ) =   
0.3012