Question

In: Physics

A satellite with Mass m is in orbit with a constant radius around the earth r0...

A satellite with Mass m is in orbit with a constant radius around the earth r0 (RE=6370km, Mass ME = 5,98*1024kg)

a) Show that the satellite moves with uniform circular motion and calculate the velocity v0 in dependance of G,M E and R E .

b) At which height h above the earth's surface is the geostationary orbit found? Which linear velocity does a satellite have at this height?

c) Compare this to the linear velocity on earth's surface as a function of the geographical latitude. Where should a spacecraft ideally take off?

Solutions

Expert Solution

Parte A

el satélite se mueve alrededor de la Tierra en una órbita circular bajo la influencia de la fuerza gravitacional. El satélite debe tener una aceleración centrípeta. El satélite se considera como una partícula bajo una fuerza neta y una partícula en movimiento circular uniforme. La única fuerza externa que actúa sobre el satélite es la fuerza gravitacional, que actúa hacia el centro de la Tierra y mantiene al satélite en su órbita circular.

Aplica la segunda ley de Newton al satélite y obtenemos:

Vamos a resolver y tenga en cuenta que la distancia desde el centro de la Tierra hasta el satélite es , donde es el radio de la tierra h la altura del satélite.

para determinar h equiparamos la fuerza centrípeta y la fuerza de la gravedad (deben ser iguales para que el satélite pueda estar en órbita en el planeta)

Yo cancelo m

omega es la velocidad angular de la tierra y es lo mismo que el satélite (porque es geoestacionario) y está dada por

donde G es una constante llamada constante gravitacional universal. Su valor en unidades del SI es

ahora vamos a determinar v

dónde

Parte B

la altura a la que el satélite orbita la Tierra ya se ha determinado en la parte A y viene dada por:

y la velocidad lineal que el satélite tiene a esa altura también se determinó en la parte A y está dada por:


Related Solutions

A satellite in a circular orbit around the earth with a radius 1.011 times the mean...
A satellite in a circular orbit around the earth with a radius 1.011 times the mean radius of the earth is hit by an incoming meteorite. A large fragment (m = 81.0 kg) is ejected in the backwards direction so that it is stationary with respect to the earth and falls directly to the ground. Its speed just before it hits the ground is 361.0 m/s. Find the total work done by gravity on the satellite fragment. RE 6.37·103 km;...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is hp=215.0 km,hp=215.0 km, and it is moving with a speed of vp=8.450 km/s.vp=8.450 km/s. The gravitational constant GG equals 6.67×10−11 m3⋅kg−1⋅s−26.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg.5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height haha above...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is ℎp=215.0 km, and it is moving with a speed of ?p=8.850 km/s. The gravitational constant ? equals 6.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height ℎa above the ground? For this...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is hp=215.0 km,hp=215.0 km, and it is moving with a speed of vp=8.450 km/s.vp=8.450 km/s. The gravitational constant GG equals 6.67×10−11 m3⋅kg−1⋅s−26.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg.5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height haha above...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to the center of the earth ranges from 7.2 Mm at perigee (where the speed is 8.0 km/s) to 9.9 Mm at apogee. 1. Assume the initial conditions are x = 0, y = 7.2 × 106 m, vx = 8.0×103 m/s, and vy = 0. Use python program to print its speed, distance from the earth, kinetic energy, potential energy, and total mechanical energy...
There is a satellite of mass m in an orbit radius R about a planet with...
There is a satellite of mass m in an orbit radius R about a planet with mass M. a. What is the sum of the kinetic energy and the gravitational potential energy of the satellite? b. What is the energy required for the satellite to escape the planet's gravity?
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and...
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and m be the mass of the earth and that of the satellite, respectively. Show that the centripetal acceleration of the satellite is aR = -(v^2/R)*(r/r) where v = |v| is the magnitude of the velocity V and r/r is a unit vector in the radial direction. 2.Using Newton's second low of motion and the law of universal gravitation, determine the speed v=|V| and the...
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic,...
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic, and total mechanical energies.(b) the orbital speed.(c) the escape velocity from this altitude.
Consider a satellite of mass ms in circular orbit around Earth, a distance h above Earth's...
Consider a satellite of mass ms in circular orbit around Earth, a distance h above Earth's surface. Assume the Earth is a sphere with radius Re and mass Me. (a) As the satellite travels in circular orbit, will its speed increase, decrease, or remain constant? Explain. (b) The only force acting on the satellite is gravity, so the satellite is in freefall. Why doesn't the satellite get closer to Earth's surface? (c) Determine the ratio of the force of gravity...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the point in its orbit where it is closest to the Earth, it is a distance of 1.00 × 10^6 m from the surface (not the center) of the Earth, and is moving at a velocity of 5.14 km/s. At the point in its orbit when it is furthest from the Earth it is a distance of 2.00×10^6 m from the surface of the Earth....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT