Question

In: Math

We are tasked with constructing a rectangular box with a volume of 1313 cubic feet. The...

We are tasked with constructing a rectangular box with a volume of 1313 cubic feet. The material for the top costs 1010 dollars per square foot, the material for the 4 sides costs 22 dollars per square foot, and the material for the bottom costs 99 dollars per square foot. To the nearest cent, what is the minimum cost for such a box?

Solutions

Expert Solution

1st we have to find cost of box in terms of a single variable and then minimize it by using derivative

For relative maximum or minimum

To maximize or minimize a function f(x) 1st we need to find its critical points

For critical points we need to put differentiation of f(x) equal to zero i.e. f '(x) = 0

Then check second derivative of f(x) i.e. f ''(x) is positive or negative at critical numbers If f ''(x) >0 then that gives minimum value of f(x) and if f ''(x) <0 then that give maximum value of f(x)


Related Solutions

A rectangular box with a square base has a volume of 4 cubic feet. The material...
A rectangular box with a square base has a volume of 4 cubic feet. The material for the bottom of the box costs $3 per square foot, the top costs $2 per square foot, and the four sides cost $5 per square foot. (a) If x is the side length of the square base, and y is the height of the box, find the total cost of the box as a function of one variable. (b) Find the critical number...
A rectangular box with a square base has a volume of 4 cubic feet. The material...
A rectangular box with a square base has a volume of 4 cubic feet. The material for the bottom of the box costs $3 per square foot, the top costs $2 per square foot, and the four sides cost $5 per square foot. (a) If x is the side length of the square base, and y is the height of the box, find the total cost of the box as a function of one variable. (b) Find the critical number...
A closed rectangular box of volume 324 cubic inches is to be made with a square...
A closed rectangular box of volume 324 cubic inches is to be made with a square base. If the material for the bottom costs twice per square inch as much as the material for the sides and top, find the dimensions of the box that minimize the cost of materials.
We want to design a rectangular box without a lid with a volume of 64000 cm^3....
We want to design a rectangular box without a lid with a volume of 64000 cm^3. Find the dimensions that maximize the surface area. Using Lagrange Multipliers Can you explain your reasoning pls
create a speaker box with a volume of 14400 cubic inches. The box will be used...
create a speaker box with a volume of 14400 cubic inches. The box will be used for speakers of various sizes. The speaker box must have a square base and minimal surface area ( prior to cutting holes for the speakers ). Find the box’s dimensions. Your must construct a diagram [ V = LWH ]
A rectangular box with no top is to be made to hold a volume of 32...
A rectangular box with no top is to be made to hold a volume of 32 cubic inches. Which of following is the least amount of material used in its construction? a.) 80 in2 b.) 48 in2 c.) 64 in2 d.) 96 in2
A rectangular storage container with an open top is to have a volume of 16 cubic...
A rectangular storage container with an open top is to have a volume of 16 cubic meters. The length of its base is twice the width. Material for the base costs 15 dollars per square meter. Material for the sides costs 6 dollars per square meter. Find the cost of materials for the cheapest such container.
A rectangular storage container with an open top is to have a volume of 14 cubic...
A rectangular storage container with an open top is to have a volume of 14 cubic meters. The length of its base is twice the width. Material for the base costs 14 dollars per square meter. Material for the sides costs 7 dollars per square meter. Find the cost of materials for the cheapest such container.
A rectangular storage container with an open top is to have a volume of 20 cubic...
A rectangular storage container with an open top is to have a volume of 20 cubic meters. The length of its base is twice the width. Material for the base costs 14 dollars per square meter. Material for the sides costs 7 dollars per square meter. Find the cost of materials for the cheapest such container.
A rectangular storage container with an open top is to have a volume of 9826 cubic...
A rectangular storage container with an open top is to have a volume of 9826 cubic meters. The length of its base is twice the width. Material for the base costs 12 dollars per square meter. Material for the sides costs 8 dollars per square meter. Find the cost of materials for the cheapest such container.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT