In: Chemistry
Determine the predicted rate law expression for the following radical-chain reaction
A2 -> 2 A. k1
A. -> B. + C k2
A. + B. -> P k3
A. + P -> B. k4
initiation A2----> 2A. K1 rate = K1[A2] ...1
propagation A.----> B. + C K2 rate= K2[A.] ....2
inhibition A.+ P ---->B. K4 rate= K4[A.] [P] ...3
terminationA.+ B. ---->P K3 rate= K3[A.][B.] ...4
The rate equation can be derived on the basis of steady-state approximation.The rate of change of intermediates may be set equal to zero.
d[A.]/dt =2K1[A2]-K2[A.] -K3[A.][B.]-K4[A.][P]=0 ....5
d[B.]/dt=K2[A.] -K3[A.][B.]+ K4[A.][P]=0 ......6
d[P]/dt= K3[A.][B.] - K4[A.][P]=0......7
K3[A.][B.]= K4[A.][P]
putting these value in eq.6&5
d[A.]/dt =2K1[A2]-K2[A.] -2K4[A.][P]=0
d[B.]/dt=K2[A.] =0
adding above reaction
2K1[A2] = 2K4[A.][P]
The steady-state concentration of A. radicals is
K1/K4 [A2]/[P]=[A.]
If follows that the rate of formation of C is
d[C]/dt= K2 [A.] = K2 xK1/K4 [A2]/[P]