In: Statistics and Probability
| 
 7.5  | 
 9.3  | 
 11.8  | 
 6.8  | 
 7  | 
 8.2  | 
| 
 8  | 
 9.8  | 
 10  | 
 7.5  | 
 8.1  | 
 7.7  | 
| 
 9  | 
 9.1  | 
 6.2  | 
 7.6  | 
 8.3  | 
 10.1  | 
| 
 12  | 
 6.9  | 
 8.5  | 
 7.1  | 
 10.6  | 
 6.5  | 
| 
 8.3  | 
 8  | 
 9.4  | 
 5.9  | 
 11.2  | 
 9  | 
Q1:
Confidence interval = (0.463, 0.754)
Point estimate (p hat) = (0.463 + 0.754)/2 = 0.6085
Margin of error, E = Point estimate - lower limit = 0.6085 - 0.463 = 0.1455
--
Q2:
Proportion, p = 0.75
Margin of error, E = 0.05
Confidence Level, CL = 0.95
Significance level, α = 1 - CL = 0.05
Critical value, z = NORM.S.INV(0.05/2) = 1.96
Sample size, n = (z² * p * (1-p)) / E² = (1.96² * 0.75 * 0.25)/ 0.05²
= 288.1094 = 288
--
Q3: Let Proportion, p = 0.5
Margin of error, E = 0.05
Confidence Level, CL = 0.95
Significance level, α = 1 - CL = 0.05
Critical value, z = NORM.S.INV(0.05/2) = 1.96
Sample size, n = (z² * p * (1-p)) / E² = (1.96² * 0.5 * 0.5)/ 0.05²
= 384.1459 = 384
--
Q4:
α = 1-0.95 = 0.05
df = n-1 = 15,
Critical value, t-crit = T.INV.2T(0.05, 15) = 2.131
--
Q5:
∑x = 255.4
n = 30
Mean, x̅ = Ʃx/n = 255.4/30 = 8.5133
σ = 1.5
95% Confidence interval :
At α = 0.05 two tailed critical value, z_c = ABS(NORM.S.INV(0.05/2)) = 1.960
Lower Bound = x̅ - z_c*σ/√n = 8.5133 - 1.96 * 1.5/√30 = 7.98
Upper Bound = x̅ + z_c*σ/√n = 8.5133 + 1.96 * 1.5/√30 = 9.05
7.98 < µ < 9.05