In: Statistics and Probability
construct the confidence interval for the population mean μ. c=0.98, _ x=4.7, o'=0.9 and n=42. A 98% confidence interval for μ is ( _ , _ )
Solution :
Given that,
= 4.7
= 0.9
n = 42
At 98% confidence level the z is ,
= 1 - 98% = 1 - 0.98 = 0.02
/ 2 = 0.02 / 2 = 0.01
Z/2 = Z0.01 = 2.326
Margin of error = E = Z/2* (/n)
= 2.326 * (0.9 / 42)
= 0.3
At 98% confidence interval estimate of the population mean is,
- E < < + E
4.7 - 0.3 < < 4.7 + 0.3
4.4 < < 5.0
(4.4 , 5.0)