In: Statistics and Probability
Given the following sample observations, draw a scatter diagram on a separate piece of paper.
| X: | −7 | −16 | 13 | 3 | 16 | 
| Y: | 54 | 241 | 157 | 1 | 342 | 
Click here for the Excel Data File
Compute the correlation coefficient. (Round your answer to 3 decimal places.)
Does the relationship between the variables appear to be linear?
Yes
No
Try squaring the x variable and then determine the correlation coefficient. (Round your answer to 3 decimal places.)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 9 | 795 | 722.8 | 76206.0 | 1851.00 | 
| mean | 1.80 | 159.00 | SSxx | SSyy | SSxy | 
sample size ,   n =   5  
       
here, x̅ = Σx / n=   1.80   ,
    ȳ = Σy/n =   159.00  
          
       
SSxx =    Σ(x-x̅)² =    722.8000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   1851.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   1851.0  
/   722.800   =   2.5609
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
154.3904          
          
       
so, regression line is   Ŷ =  
154.3904   +   2.5609   *x
          
       
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
71465.822          
          
       
std error ,Se =    √(SSE/(n-2)) =   
154.344          
          
       
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.249   
2)
Yes but weak positive
3)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 739 | 795 | 52890.8 | 76206.0 | 60935.00 | 
| mean | 147.80 | 159.00 | SSxx | SSyy | SSxy | 
sample size ,   n =   5  
       
here, x̅ = Σx / n=   147.80   ,
    ȳ = Σy/n =   159.00  
          
       
SSxx =    Σ(x-x̅)² =    52890.8000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   60935.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   60935.0  
/   52890.800   =   1.1521
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
-11.2790          
          
       
so, regression line is   Ŷ =  
-11.2790   +   1.1521   *x
          
       
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
6003.352          
          
       
std error ,Se =    √(SSE/(n-2)) =   
44.734          
          
       
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.96
THANKS
revert back for doubt
please upvote