In: Finance
You are a college student and you plan to purchase a new car after you graduate and begin your first job. You want to start saving for a down payment now on a new car in the future . You decide to make monthly payment into a saving account, which earns 2.5% annual interest compounded monthly. You will calculate a monthly payment into the saving account for each scenario.
A.To save $4,000 for 3 years.
B.To save $5,000 for 3 years.
C.To save $5,000 for 4 years.
Formula for future value of annuity can be used to compute periodic payment as:
FV = P x [(1+r) n – 1/r]
P = FV/ [(1+r) n – 1/r]
FV= Future Value
P = Periodic cash flow
r = Rate per period = 2.5 % p.a. or 0.025/12 = 0.00208333333 p.m.
n = Numbers of periods
A.
FV = $ 4,000; n = 3 x 12 = 36 periods
P = $ 4,000/ [(1+0.00208333333)36 – 1/0.00208333333]
= $ 4,000/ [(1.00208333333)36 – 1/0.00208333333]
= $ 4,000/ [(1.07780006111199 – 1)/0.00208333333]
= $ 4,000/ (0.07780006111199/0.00208333333)
= $ 4,000/ 37.2663910788834
= $ 107.1121693337 or $ 107.11
Required monthly payment is $ 107.11
B.
FV = $ 5,000; n = 3 x 12 = 36 periods
P = $ 5,000/ [(1+0.00208333333)36 – 1/0.00208333333]
= $ 5,000/ [(1.00208333333)36 – 1/0.00208333333]
= $ 5,000/ [(1.07780006111199 – 1)/0.00208333333]
= $ 5,000/ (0.07780006111199/0.00208333333)
= $ 5,000/ 37.2663910788834
= $ 133.8902116671 or $ 133.89
Required monthly payment is $ 133.89
C.
FV = $ 5,000; n = 4 x 12 = 48 periods
P = $ 5,000/ [(1+0.00208333333)48 – 1/0.00208333333]
= $ 5,000/ [(1.00208333333)48 – 1/0.00208333333]
= $ 5,000/ [(1.10505596154990– 1)/0.00208333333]
= $ 5,000/ (0.10505596154990/0.00208333333)
= $ 5,000/ 50.426861624635
= $ 99.153503488255 or $ 99.15
Required monthly payment is $ 99.15