In: Statistics and Probability
The variables collected for this sample are average starting salary upon graduation ($), the percentage of applicants to the full-time program who were accepted, the average GMAT test score of students entering the program, program per-year tuition ($), and percent of students with job offers at time of graduation.
University | Tuition per year ($) | Average GMAT score | Acceptance Rate (%) | Graduates employed at graduation (%) | Average starting salary and bonus ($) |
1 | 61875 | 732 | 7.1 | 73.6 | 142834 |
2 | 58875 | 726 | 11.0 | 76.9 | 144750 |
3 | 62424 | 728 | 20.7 | 84.3 | 142574 |
4 | 61520 | 724 | 23.5 | 87.4 | 137615 |
5 | 63454 | 713 | 13.8 | 79.6 | 142936 |
6 | 61596 | 713 | 23.2 | 80.7 | 136357 |
7 | 63148 | 716 | 18.2 | 75.7 | 139006 |
8 | 61605 | 716 | 22.1 | 83.8 | 142489 |
9 | 60744 | 721 | 18.1 | 74.9 | 135933 |
10 | 58000 | 690 | 25.1 | 81.8 | 137154 |
11 | 58975 | 719 | 23.7 | 69.4 | 126871 |
12 | 58192 | 692 | 30.0 | 79.6 | 132316 |
13 | 51500 | 699 | 26.7 | 84.5 | 111974 |
14 | 58300 | 687 | 31.2 | 75.5 | 131865 |
15 | 48100 | 678 | 30.7 | 81.7 | 128347 |
16 | 52200 | 691 | 47.4 | 70.3 | 118938 |
17 | 46800 | 686 | 34.8 | 71.7 | 115694 |
18 | 51786 | 684 | 31.6 | 64.4 | 114129 |
19 | 47950 | 688 | 41.3 | 77.1 | 113830 |
data =
read.table("clipboard",
header
= TRUE)
# Model
1
m1 =
lm(data$AverageStartingSalaryAndBonus
~
data$TuitionPerYear)
summary(m1)
##
## Call:
## lm(formula =
data$AverageStartingSalaryAndBonus ~
data$TuitionPerYear)
##
## Residuals:
##
Min 1Q Median
3Q Max
## -9444 -2634
-1220 2914 12839
##
##
Coefficients:
##
Estimate Std. Error t value
Pr(>|t|)
##
(Intercept)
31900.800 14023.174 2.275 0.0362
*
##
data$TuitionPerYear
1.738 0.244 7.124
1.71e-06 ***
## ---
## Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
5803 on 17 degrees of freedom
## Multiple R-squared:
0.7491, Adjusted R-squared: 0.7343
## F-statistic: 50.75 on 1
and 17 DF, p-value: 1.705e-06
R2_m1 = summary(m1)$r.squared;R2_m1
## [1] 0.7490727
corr_m1 = sqrt(R2_m1);corr_m1
## [1] 0.8654899
# Model
2
m2 =
lm(data$AverageStartingSalaryAndBonus
~
data$AverageGMATScore)
summary(m2)
##
## Call:
## lm(formula =
data$AverageStartingSalaryAndBonus ~
data$AverageGMATScore)
##
## Residuals:
##
Min 1Q Median
3Q Max
## -16489 -6429
1081 6693 12735
##
##
Coefficients:
##
Estimate Std. Error t value
Pr(>|t|)
##
(Intercept)
-185599.4 76932.3 -2.413 0.027424 *
##
data$AverageGMATScore
449.3 109.0 4.121
0.000713 ***
## ---
## Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
8194 on 17 degrees of freedom
## Multiple R-squared:
0.4998, Adjusted R-squared: 0.4703
## F-statistic: 16.98 on 1
and 17 DF, p-value: 0.0007135
R2_m2 = summary(m2)$r.squared;R2_m2
## [1] 0.4997507
corr_m2 = sqrt(R2_m2);corr_m2
## [1] 0.7069305
# Model
3
m3 =
lm(data$AverageStartingSalaryAndBonus
~
data$AcceptanceRate)
summary(m3)
##
## Call:
## lm(formula =
data$AverageStartingSalaryAndBonus ~
data$AcceptanceRate)
##
## Residuals:
##
Min 1Q Median
3Q Max
## -18110 -3967
1423 5404 8329
##
##
Coefficients:
##
Estimate Std. Error t value
Pr(>|t|)
##
(Intercept)
153739.4 4645.6 33.09 <
2e-16 ***
##
data$AcceptanceRate
-886.0 171.7 -5.16
7.85e-05 ***
## ---
## Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
7232 on 17 degrees of freedom
## Multiple R-squared:
0.6103, Adjusted R-squared: 0.5874
## F-statistic: 26.63 on 1
and 17 DF, p-value: 7.848e-05
R2_m3 = summary(m3)$r.squared;R2_m3
## [1] 0.6103376
corr_m3 = sqrt(R2_m3);corr_m3
## [1] 0.7812411
# Model
4
m4 =
lm(data$AverageStartingSalaryAndBonus
~
data$GraduatesEmployedAtGraduation)
summary(m4)
##
## Call:
## lm(formula =
data$AverageStartingSalaryAndBonus ~
data$GraduatesEmployedAtGraduation)
##
## Residuals:
##
Min 1Q Median
3Q Max
## -24790 -6525
2086 6444 14529
##
##
Coefficients:
##
Estimate Std. Error t value Pr(>|t|)
##
(Intercept)
71185.7 32437.4 2.195
0.0424 *
##
data$GraduatesEmployedAtGraduation
776.1 417.3
1.860 0.0803 .
## ---
## Signif. codes: 0 '***'
0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error:
10560 on 17 degrees of freedom
## Multiple R-squared:
0.1691, Adjusted R-squared: 0.1202
## F-statistic: 3.459 on 1
and 17 DF, p-value: 0.08029
R2_m4 = summary(m4)$r.squared;R2_m4
## [1] 0.1690816
corr_m4 = sqrt(R2_m4);corr_m4
## [1] 0.4111954
# TuitionPerYear has highest correlation value with the Response variable "AverageStartingSalaryAndBonus"