Question

In: Statistics and Probability

It is generally believed that the heights of adults males in the U.S. are approximately normally...

It is generally believed that the heights of adults males in the U.S. are approximately normally distributed with mean 70 inches (5 feet, 10 inches) and standard deviation 3 inches and that the heights of adult females in the U.S. are also approximately normally distributed with mean 64 inches (5 feet, 4 inches) and standard deviation 2.5 inches. A small university is considering custom ordering beds for their dorm rooms. Answer the following questions about the lengths of beds in dorm rooms at this university.

a) Should the university be concerned that females will not fit in the 75 inch beds? Numerically justify your answer.

b) The university decides it is too expensive to replace all the beds. Suppose the university has 2,150 beds all of which are 75 inches long. How many beds should they replace? You may assume that only those males taller than 75 inches will receive the longer beds and that females make up half of the population that will need a dorm room bed.

c) The university plans on ordering custom sized beds such that 99% of male students are expect to fit in them when lying perfectly straight. What length beds should they order? Round your answer to the nearest inch.

Solutions

Expert Solution

Let X be the height of adult males in US

then

Let Y be the height of adult females

then

(a) To find P( Y > 75)

=P(z > 4.4)

= 0.00001 ( from z table)

Since Probability of height of adult female being more than 75 inches is 0.00001 , which is very small.

So University should not be concerned about females not fitting in 75 inches bed .

b) Let us find P(X>75)

= P(z > 1.67)

= 0.0475 (from z table)

Probability of height of adult male being more than 75 inches is 0.0475

Males ( females) make up half of the population who need dorm bed

Thus number of males who need dorm bed is 2150/2= 1075

Number of males who need bed of more than 75 inches long = 1075* 0.0475=51 (rounding)

Thus number of beds to be replaced = 51

c) To find c such that

P( X <c ) =0.99

From z table

P( z < 2.33) =0.99

Thus

Length of bed should be ordered = 77 inches


Related Solutions

It is generally believed that the heights of adults males in the U.S. are approximately normally...
It is generally believed that the heights of adults males in the U.S. are approximately normally distributed with mean 70 inches (5 feet, 10 inches) and standard deviation 3 inches and that the heights of adult females in the U.S. are also approximately normally distributed with mean 64 inches (5 feet, 4 inches) and standard deviation 2.5 inches. A small university is considering custom ordering beds for their dorm rooms. Answer the following questions about the lengths of beds in...
The heights of males in a population are approximately normally distributed with mean 69.2 inches and...
The heights of males in a population are approximately normally distributed with mean 69.2 inches and standard deviation 2.92. The heights of females in the same population are approximately normally distributed with mean 64.1 inches and standard deviation 2.75. a. Suppose one male from this age group is selected at random and one female is independently selected at random and their heights added. Find the mean and standard error of the sampling distribution of this sum. Mean = Standard deviation...
The heights of women in the U.S. have been found to be approximately normally distributed with...
The heights of women in the U.S. have been found to be approximately normally distributed with a mean of 63.02 inches and the variance to be 9.00 inches. a) What percent of women are taller than 64.43 inches? probability = b) What percent of women are shorter than 61.7 inches? probability = c) What percent have heights between 61.7 and 64.43 inches? probability = Note: Do NOT input probability responses as percentages; e.g., do NOT input 0.9194 as 91.94
The heights of women in the U.S. have been found to be approximately normally distributed with...
The heights of women in the U.S. have been found to be approximately normally distributed with a mean of 63.02 inches and the variance to be 9.00 inches. a) What percent of women are taller than 64.43 inches? probability = b) What percent of women are shorter than 61.7 inches? probability = c) What percent have heights between 61.7 and 64.43 inches? probability = Note: Do NOT input probability responses as percentages; e.g., do NOT input 0.9194 as 91.94
6. Heights in inches for American males aged 20 and over are approximately normally distributed (symmetric)...
6. Heights in inches for American males aged 20 and over are approximately normally distributed (symmetric) with the mean height 69.3 inches and std deviation 2.99 inches. a.What percentage of American males in the above age group who are 6 feet or taller? b.Find the 99th percentile of the American males in the above age group and interpret it. c. Suppose a random sample of 100 American males aged 20 or more is taken, what is the probability that the...
The heights of UNC sophomores are approximately normally distributed. The heights in inches of 8 randomly...
The heights of UNC sophomores are approximately normally distributed. The heights in inches of 8 randomly selected sophomores are shown below. Use these heights to find a 95% confidence interval for the average height μ of UNC sophomores. Give the endpoints of your interval to one decimal place. 72, 69, 70, 68, 70, 66, 75, 64 a) Use these heights to find a 95% confidence interval for the average height μ of UNC sophomores. Give the endpoints of your interval...
Suppose the heights of males on campus are normally distributed with a mean of 69 inches...
Suppose the heights of males on campus are normally distributed with a mean of 69 inches and standard deviation of 2.5 inches. You plan to choose a random sample of 14 males from the student directory. a. What is the probability the mean height for your sample will be greater than 70.5 inches? b. The sample size you used was fairly small. Does this affect the validity of the probability you calculated in (a)?
The distribution of heights for the population of females in Canada is approximately normally distributed with...
The distribution of heights for the population of females in Canada is approximately normally distributed with a mean of 67.3 inches and a standard deviation of 7 inches. What is the probability that a randomly selected female is shorter than 65 inches? What is the probability that she is between 65 and 70 inches tall? Above what height does one find the tallest 10% of the population? What is the probability that among three females selected at random from the...
The heights of 1000 students are approximately normally distributed with a mean of 174.5centimeters and a...
The heights of 1000 students are approximately normally distributed with a mean of 174.5centimeters and a standard deviation of 6.9 centimeters. Suppose 200 random samples ofsize 25 are drawn from this population and the means recorded to the nearest tenth of acentimeter. Determine (a) the mean and standard deviation of the sampling distribution of ̄X; (b) the number of sample means that fall between 171 and 177 cm . Let X be a random variable following a continuous uniform distribution...
(Sample distributions) Heights of males at WSU are normally distributed with a mean of 70 inches...
(Sample distributions) Heights of males at WSU are normally distributed with a mean of 70 inches and a standard deviation of 3.5 inches. You will randomly select 16 males at WSU at record the mean height. (a) Explain why the men of your sample will likely not be the population mean of 70 inches. (b) What is the mean of your sampling distribution of means? (c) What is the standard deviation of your sampling distribution of means? (d) The Central...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT