Question

In: Chemistry

Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for...

Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for the reaction:

            2SO2 (g) + O2 (g) à 2SO3 (g)

                   

Solutions

Expert Solution


Related Solutions

Use data from Appendix C to calculate the equilibrium constant, K, and ΔG∘ at 298 K...
Use data from Appendix C to calculate the equilibrium constant, K, and ΔG∘ at 298 K for each of the following reactions. H2(g)+I2(g)⇌2HI(g) Calculate ΔG∘. Express your answer to four significant figures and include the appropriate units. Part A H2(g)+I2(g)⇌2HI(g) Calculate ΔG∘. Express your answer to four significant figures and include the appropriate units. Part B Calculate the equilibrium constant, K. Express your answer using two significant figures. Part C C2H5OH(g)⇌C2H4(g)+H2O(g) Calculate ΔG∘. Express your answer to two significant figures...
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form...
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form nitrogen and water. The data refer to 298 K. 4NH3(g) + 3O2(g) <> 2N2(g) + 6H2O(l) Substance NH3(g) O2(g) N2(g) H2O(l) ΔH°f (kJ/mol) -46 0 0 -285 ΔG°f (kJ/mol) -16 0 0 -237 S°(J/K·mol) 192 205 192 70 I thought Kc is just Molar concentration of Products divide by Molar concentration on Reactants which would be 12 x 16 divide by 14 x 13...
Using the following thermochemical tables, calculate the indicated equilibrium constant at 298 K for the following...
Using the following thermochemical tables, calculate the indicated equilibrium constant at 298 K for the following reactions. (a) H2(g) + I2(s) -> 2HI(g) Kp = ? (b) NH3(aq) + H2O(l) = NH4+(aq) + OH-(aq) Kb = ? (c) Fe(OH)2(s) = Fe2+(aq) + 2OH-(aq) Ksp = ? Substance ΔHo (kJ/mol) ΔGo (kJ/mol) So (J/mol K) Al(s)             0                          0                   28.32 Al2O3(s)    -1669.8             -1576.5               51.0 CH3OH(l) -238.6               -166.23              126.8 CO(g)        -110.5               -137.2                197.9 CO2(g)       -393.5               -394.4                213.6 Cl2(g)            0                         0                   222.96 Cl –(aq)...
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: Co2+(aq)...
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: Co2+(aq) + 2I-(aq) Co(s) + I2(s) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. Equilibrium constant:
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: I2(s)...
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: I2(s) + Hg(l) = 2I-(aq) + Hg2+(aq) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. Equilibrium constant: -------
The reaction below has an equilibrium constant K p =2.2× 10 6 at 298 K. 2...
The reaction below has an equilibrium constant K p =2.2× 10 6 at 298 K. 2 COF 2 (g)⇌ CO 2 (g)+ CF 4 (g) Part A Calculate K p for the reaction below. COF 2 (g)⇌ 1 2 CO 2 (g)+ 1 2 CF 4 (g) Part B Calculate K p for the reaction below. 2 3 COF 2 (g)⇌ 1 3 CO 2 (g)+ 1 3 CF 4 (g) Part C Calculate K p for the reaction below....
Using standard Gibbs energy of formation values given in the table, calculate the equilibrium constant K...
Using standard Gibbs energy of formation values given in the table, calculate the equilibrium constant K of the reaction Cl2(g)+2NO(g)⇌2NOCl(g) The standard Gibbs energy change of the reaction represents the drive the reaction has under standard conditions to move toward equilibrium from point A to point X in the diagram. Substance ΔfG∘ (kJ mol−1) Cl2(g) 0 NO(g) 86.71 NOCl(g) 66.30
Use the values provided in the table below to calculate ΔGrxn in kJ at 298 K...
Use the values provided in the table below to calculate ΔGrxn in kJ at 298 K for the combustion of 1 mole of sucrose, C12H22O11. Substance ΔHf°, kJ/mol Sf°, J/mol∙K C12H22O11 (s) -2222 360 O2 (g) 0 205 CO2 (g) -394 214 H2O (g) -242 189
Calculate the standard potential, E°, for this reaction from its equilibrium constant at 298 K. X(s)...
Calculate the standard potential, E°, for this reaction from its equilibrium constant at 298 K. X(s) + Y^2+(aq) ⇌ X^2+(aq) + Y(s)     K= 1.43 x 10^-6     E^o = ? V
The equilibrium constant for the reaction below is K = 0.36 at 400 K. If 1.5...
The equilibrium constant for the reaction below is K = 0.36 at 400 K. If 1.5 g of PCl5 was initially placed in a reaction vessel with a volume of 250 cm3, what is the molar concentration of each gas at equilibrium? What is Delta Gorxn for the reaction: PCl5 (g) à PCl3 (g) + Cl2 (g) - Please show all work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT