In: Economics
Assume you have the two markets below:
Market 1
Qs = 60 + 10P1 and Qd = 110 – 60P1 + 50P2
Market 2
Qs = 30 + 15P2 and Qd = 60 – 40P2 +20P1
Using an Excel spreadsheet, find the prices for P1 and P2 that yield simultaneous market clearing in both markets.
Market 1
Qs = 60 + 10P1 and
Qd = 110 – 60P1 + 50P2
Market 2
Qs = 30 + 15P2 and
Qd = 60 – 40P2
+20P1
For market clearing, Qs=Qd
60 + 10P1 = 110 – 60P1 +
50P2
70P1 - 50P2 = 50 ----- 1
30 + 15P2 = 60 – 40P2
+20P1
20P1 - 55P2 = -30 ---- 2
solving 1 and 2, multiplying 2 by 3.5 and subtracting from
1
70P1 - 50P2 = 50
70P1 - 192.5P2 = -105
192.5P2 - 50P2 = 155
142.5P2 = 155
P2 = 1.09
70P1 - 50P2 = 50
70P1 = 50 + 5P2
P1 = (50 + 54.39)/70 = 1.49
Ax =B | |||||||
A | X | B | |||||
70 | -50 | P1 | 50 | ||||
20 | -55 | P2 | -30 | ||||
A-1 | MINVERSE(A3:B4) | ||||||
0.02 | -0.02 | ||||||
0.01 | -0.02 | ||||||
A-1 | A | X | A-1 | B | |||
0.02 | -0.02 | 70.00 | -50.00 | P1 | 0.02 | -0.02 | 50.00 |
0.01 | -0.02 | 20.00 | -55.00 | P2 | 0.01 | -0.02 | -30.00 |
1.00 | 0.00 | P1 | 1.49 | ||||
0.00 | 1.00 | MMULT(A11:B12,C11:D12) | P2 | 1.09 |
Formula used are mentioned, please press ctr+shift+enter after
entering the formula and selecting the required number of cells to
populate.