Question

In: Physics

What is the difference between isothermal and adiabatic? 300 cm3 of an ideal diatomic gas at...

What is the difference between isothermal and adiabatic? 300 cm3 of an ideal diatomic gas at a pressure of 1 atmosphere and a temperature of 300 K (i.e. room temperature) is contained by a cylinder with a piston top. A camshaft turns and drives the piston further into the cylinder, reducing the volume to 100 cm3 .

(a) What is the final pressure if this compression takes place isothermally? What is the final pressure and temperature if the compression takes place adiabatically?

(b) Pistons in auto-engine cylinders perform this sort of compression hundreds of thousands of times per minute. Is auto-engine compression more likely to be isothermal or adiabatic?

(c) Which sort of compression would lead to a more efficient engine: isothermal or adiabatic?

Solutions

Expert Solution

When a process happens such that during the process the temperature of system remains constant then this process is called "Isothermal process".

for isothermal process

isothermal process obeys Boyle's law-

On the other hand if a process occurs such that there is no exchange of heat between system and surrounding then process is called "adiabatic process".For adiabatic process-

Adiabatic process obeys Adiabatic equation-

where

(a)Given that-

T1=300k,

V1=300cc

P1=1atm

V2=100cc

If compression takes isothermally then-

If compression is Adiabatic-

for diatomic gas

so-

------------------------------------------------------------------------------------------

(b)Since piston compresses the gas very fast in the engine so that there is very small chance to heat heat exchange between the gas and surrounding so auto engine-compression is more likely adiabatic.

------------------------------------------------------------------------------------------------------------------------------------

(C)Adiabatic compression process lead to a more efficient engine because during combustion of the gas we require a high pressure gas at high temperature so that when we ignite it then a high pressure and volume is obtained that pushes the piston with larger force.also adiabatic compression takes very small time compared to isothermal compression so we can make high speed engine only with adiabatic compression.


Related Solutions

An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in...
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in state A with pressure 100 kPa, temperature300 K, and volume 0.50 L. It first undergoes an isochoric heating to state B with temperature 900 K. That is followed by an isothermal expansion to state C. Finally, an isobaric compression that returns the gas to state A. (a)Determine the pressure, volume, and temperature of state B. (b)Determine the pressure, volume, and temperature of state C....
The pressure of a monatomic ideal gas doubles during an adiabatic compression. What is the ratio...
The pressure of a monatomic ideal gas doubles during an adiabatic compression. What is the ratio of the final volume to the initial volume (Vf/Vi)?
4 mol of a diatomic gas are taken through cycle ABC. AC is adiabatic, BC is...
4 mol of a diatomic gas are taken through cycle ABC. AC is adiabatic, BC is isochoric, and AB is isothermal. The volume at A = 2L and T = 300K. The pressure at B is 4 times less than at A. What is the efficiency of the cycle? Show pictorial as well
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 227.5×10−6 m3 to a final volume of 101.0×10−6 m3. If 8890 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas?
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes from an initial volume of 222.0 × 10 − 6 m 3 to a final volume of 123.5 × 10 − 6 m 3 . If 7.60 × 10 3 J is released by the gas during this process, what are the temperature T and the final pressure p f of the gas
A diatomic gas containing 1.5 moles expands in an isothermal process from b to c. From...
A diatomic gas containing 1.5 moles expands in an isothermal process from b to c. From c to a the gas is compressed from a volume of 0.1m3 to 0.04m3 at a constant pressure of 100kPa and from a to b the gas goes through an isochoric process. Determine: (3 pts) Determine highest temperature and the lowest temperature reached by the gas. High Low (6 pts) Determine how much heat is added to the gas in each cycle and how...
Calculate the work done by the adiabatic expansion between the same volumes used in the isothermal...
Calculate the work done by the adiabatic expansion between the same volumes used in the isothermal expansion: 2 m3 to 5 m3 for both the a.) irreversible and b.) reversible processes. Use a monoatomic ideal gas: CV=3R/2 (bar above CV); P1 = 5 Pa; take T1 to be 300K
Prove that the adiabatic process of an ideal gas in a simple compressible closed system is...
Prove that the adiabatic process of an ideal gas in a simple compressible closed system is the polytropic process of n=k ( where k is the specific heat rate) by using the thermodynamic first law. Please answer quickly will rate positive thank u
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The...
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The gas undergoes an isochoric increase in pressure to 2.31 atm, then an isobaric expansion to 114 cm3. Pressure is reduced isochorically to the original pressure before an isobaric compression returns the gas to its initial values. For 1.95 moles of the gas, complete the following: a) Generate a sketch of the PV diagram, with values clearly represented. b) Find the heat absorbed and heat...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT