Question

In: Statistics and Probability

A technician compares repair costs for two types of microwave ovens (type I and type II)....

A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 59 type I ovens has a mean repair cost of $71.68, with a standard deviation of $15.08. A sample of 48 type II ovens has a mean repair cost of $66.21, with a standard deviation of $10.25. Conduct a hypothesis test of the technician's claim at the 0.05 level of significance. Let μ1 be the true mean repair cost for type I ovens and μ2 be the true mean repair cost for type II ovens.

Solutions

Expert Solution

Ho :   µ1 - µ2 =   0                  
Ha :   µ1-µ2 >   0                  
                          

Level of Significance ,    α =    0.05                  
                          
Sample #1   ---->   sample 1                  
mean of sample 1,    x̅1=   71.68                  
standard deviation of sample 1,   s1 =    15.08                  
size of sample 1,    n1=   59                  
                          
Sample #2   ---->   sample 2                  
mean of sample 2,    x̅2=   66.21                  
standard deviation of sample 2,   s2 =    10.25                  
size of sample 2,    n2=   48                  
                          
difference in sample means =    x̅1-x̅2 =    71.6800   -   66.2   =   5.47  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    13.1394                  
std error , SE =    Sp*√(1/n1+1/n2) =    2.5540                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   5.4700   -   0   ) /    2.55   =   2.142
                          
Degree of freedom, DF=   n1+n2-2 =    105                  

p-value =        0.017263   [excel function: =T.DIST.RT(t stat,df) ]             
Conclusion:     p-value <α , Reject null hypothesis                     
                          
There is enough evidence to sat that the repair cost for type I ovens is greater than the repair cost for type II ovens

.........................


Please revert back in case of any doubt.

Please upvote. Thanks in advance.


Related Solutions

A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 54 type I ovens has a mean repair cost of $80.93. The population standard deviation for the repair of type I ovens is known to be $16.07. A sample of 35 type II ovens has a mean repair cost of $74.68....
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 40 type I ovens has a mean repair cost of $83.73, with a standard deviation of $10.60. A sample of 31 type II ovens has a mean repair cost of $77.38, with a standard deviation of $17.35. Conduct a hypothesis test...
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 56 type I ovens has a mean repair cost of $⁢76.66, with a standard deviation of $⁢18.63. A sample of 75 type II ovens has a mean repair cost of $⁢72.66, with a standard deviation of $⁢22.09. Conduct a hypothesis test...
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 34 type I ovens has a mean repair cost of $70.86. The population standard deviation for the repair of type I ovens is known to be $12.35. A sample of 48 type II ovens has a mean repair cost of $67.84....
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 6060 type I ovens has a mean repair cost of $74.85$⁢74.85, with a standard deviation of $21.44$⁢21.44. A sample of 4747 type II ovens has a mean repair cost of $72.23$⁢72.23, with a standard deviation of $21.18$⁢21.18. Conduct a hypothesis test...
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 34 type I ovens has a mean repair cost of $71.37, with a standard deviation of $18.58. A sample of 31 type II ovens has a mean repair cost of $66.93, with a standard deviation of $24.60. Conduct a hypothesis test...
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 61 type I ovens has a mean repair cost of $80.58. The population standard deviation for the repair of type I ovens is known to be $17.46. A sample of 64 type II ovens has a mean repair cost of $73.27....
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 60 type I ovens has a mean repair cost of $76.43$, with a standard deviation of $17.12. A sample of 46 type II ovens has a mean repair cost of $69.23, with a standard deviation of $19.14. Conduct a hypothesis test...
A technician compares repair costs for two types of microwave ovens (type I and type II)....
A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 5959 type I ovens has a mean repair cost of $73.27$⁢73.27, with a standard deviation of $10.76$⁢10.76. A sample of 4747 type II ovens has a mean repair cost of $69.22$⁢69.22, with a standard deviation of $23.21$⁢23.21. Conduct a hypothesis test...
In a random sample of five microwave​ ovens, the mean repair cost was ​$65.00 and the...
In a random sample of five microwave​ ovens, the mean repair cost was ​$65.00 and the standard deviation was ​$13.50. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The 90​% confidence interval for the population mean mu is ​( nothing​, nothing​). ​(Round to two decimal places as​ needed.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT