Question

In: Math

If X is a normal random variable with parameters σ2 = 36 and μ = 10,...


If X is a normal random variable with parameters σ2 = 36 and μ = 10, compute (a) P{X ≥ 5} .
(b) P{X = 5}.
(c) P{10>X≥5}.
(d) P{X < 5}.
(e) Find the y such that P{X > y} = 0.1.

Solutions

Expert Solution


Related Solutions

let the random variable x follow a normal distribution with μ = 50 and σ2 =...
let the random variable x follow a normal distribution with μ = 50 and σ2 = 64. a. find the probability that x is greater than 60. b. find the probability that x is greater than 35 and less than 62 . c. find the probability that x is less than 55. d. the probability is 0.2 that x is greater than what number? e. the probability is 0.05 that x is in the symmetric interval about the mean between...
et the random variable x follow a normal distribution with μ = 50 and σ2 =...
et the random variable x follow a normal distribution with μ = 50 and σ2 = 64. a. find the probability that x is greater than 60. b. find the probability that x is greater than 35 and less than 62 . c. find the probability that x is less than 55. d. the probability is 0.2 that x is greater than what number? e. the probability is 0.05 that x is in the symmetric interval about the mean between...
1. Let X have a normal distribution with parameters μ = 50 and σ2 = 144....
1. Let X have a normal distribution with parameters μ = 50 and σ2 = 144. Find the probability that X produces a value between 44 and 62. Use the normal table A7 (be sure to show your work). 2. Let X ~ Exponential( λ ), for some fixed constant λ > 0. That is, fX(x) = λ e-λx = λ exp( -λx ), x > 0, ( fX(x) = 0 otherwise) (a) Create a transformed random variable Y =...
Let X be a random variable with mean μ and variance σ2. Given two independent random...
Let X be a random variable with mean μ and variance σ2. Given two independent random samples of sizes n1 = 9 and n2 = 7, with sample means X1-bar and X2-bar, if X-bar = k X1-bar + (1 – k) X2-bar, 0 < k < 1, is an unbiased estimator for μ. If X1-bar and X2-bar are independent, find the value of k that minimizes the standard error of X-bar.
If X is a normal random variable with mean ( μ ) = 50 and standard...
If X is a normal random variable with mean ( μ ) = 50 and standard deviation ( σ ) = 40, then the probability of X > 80 is: a. 0.0000 b. 0.7734 c. 1.0000 d. 0.2266
Given a random variable X having a normal distribution with μ=50, and σ =10. The probability...
Given a random variable X having a normal distribution with μ=50, and σ =10. The probability that Z assumes a value between 45 and 62 is: ___________.
Let the random variable X follow a normal distribution with a mean of μ and a...
Let the random variable X follow a normal distribution with a mean of μ and a standard deviation of σ. Let 1 be the mean of a sample of 36 observations randomly chosen from this population, and 2 be the mean of a sample of 25 observations randomly chosen from the same population. a) How are 1 and 2 distributed? Write down the form of the density function and the corresponding parameters. b) Evaluate the statement: ?(?−0.2?< ?̅1 < ?+0.2?)<?(?−0.2?<...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution,...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution, where μ is unknown but σ2 is known, and it is of interest to test H0: μ = μ0 versus H1: μ ̸= μ0 for some value μ0. The R code below plots the power curve of the test Reject H0 iff |√n(X ̄n − μ0)/σ| > zα/2 for user-selected values of μ0, n, σ, and α. For a sequence of values of μ,...
Let X ∼ Normal(μ = 20, σ2 = 4). (a) Give the mgf MX of X....
Let X ∼ Normal(μ = 20, σ2 = 4). (a) Give the mgf MX of X. (b) Find the 0.10 quantile of X. (c) Find an interval within which X lies with probability 0.60. (d) Find the distribution of Y = 3X −10 by finding the mgf MY of Y
2] Let x be a continuous random variable that has a normal distribution with μ =...
2] Let x be a continuous random variable that has a normal distribution with μ = 48 and σ = 8 . Assuming n N ≤ 0.05 , find the probability that the sample mean, x ¯ , for a random sample of 16 taken from this population will be between 49.64 and 52.60 . Round your answer to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT