In: Math
GRADED PROBLEM SET #5
Answer each of the following questions completely. There are a total of 20 points possible in the assignment.
1)a) Total = 0.1919 + 0.2121 + 0.2223 + 0.3737 = 1
Since the sum of all individual probabilities is equal to 1, so it describes a probability distribution.
b) mean(E(X)) = 4 * 0.1919 + 5 * 0.2121 + 6 * 0.2223 + 7 * 0.3737 = 5.7778
E(X^2) = 4^2 * 0.1919 + 5^2 * 0.2121 + 6^2 * 0.2223 + 7^2 * 0.3737 = 34.687
Variance = E(X^2) - (E(X))^2
= 34.687 - (5.7778)^2
= 1.304
Standard deviation = sqrt(1.304) = 1.1419
2) P(X < x) = 0.999
Or, P((X - )/ < (x - )/) = 0.999
Or, P(Z < (x - 70)/3) = 0.999
Or, (x - 70)/3 = 3.08
Or, x = 3.08 * 3 + 70
Or, x = 79.24
3)a) P(13 < X < 16.3)
= P((13 - )/ < (X - )/ < (16.3 - )/)
= P((13 - 14)/3.2 < Z < (16.3 - 14)/3.2)
= P(-0.31 < Z < 0.72)
= P(Z < 0.72) - P(Z < -0.31)
= 0.7642 - 0.3783
= 0.3859
b) P(X < 12)
= P((X - )/ < (12 - )/)
= P(Z < (12 - 14)/3.2)
= P(Z < -0.63)
= 0.2643
c) P(X > 15)
= P((X - )/> (15 - )/)
= P(Z > (15 - 14)/3.2)
= P(Z > 0.31)
= 1 - P(Z < 0.31)
= 1 - 0.6217
= 0.3783
d) P(X < x) = 0.8
Or, P((X - )/ < (x - )/) = 0.8
Or, P(Z < (x - 14)/3.2) = 0.8
Or, (x - 14)/3.2 = 0.84
Or, x = 0.84 * 3.2 + 14
Or, x = 16.688