In: Accounting
A farmer must choose between two possible investments that both require an initial outlay of $120,000 and will have no salvage value at the end of their economic life (3 years). The first investment is expected to yield annual net cash flows of $55,000 over a 3-year planning horizon. The second will yield $30,000 in the first year, $40,000 in the second and $50,000 in the third.
-The farmer finances 50% of the investment with an outside loan (interest rate 4%), and the principal will be paid in three equal yearly installments. Assume the farmer is in the 20% tax bracket and that the cost of capital is 5%. Assess the profitability of the two investments with the NPV for the ROE approach. (6 points)
Investment Required |
$ 120,000 |
|||||||
Financed through loan |
$ 60,000 |
|||||||
Repayment Schedule |
||||||||
Year |
Opening Balance |
Interest @ 4% |
Installment |
Closing Balance |
||||
1 |
$ 60,000 |
$ 2,400 |
$ 22,400 |
$ 40,000 |
||||
2 |
$ 40,000 |
$ 1,600 |
$ 21,600 |
$ 20,000 |
||||
3 |
$ 20,000 |
$ 800 |
$ 20,800 |
$ - |
||||
Cash Flow Statement |
||||||||
Year |
Option 1 |
Option 2 |
||||||
Cash Inflow |
Interest |
Tax |
Net Cash Flow |
Cash Inflow |
Interest |
Tax |
Net Cash Flow |
|
A |
B |
C = (A-B)*20% |
D = A-B-C |
A |
B |
C = (A-B)*20% |
D = A-B-C |
|
1 |
$ 55,000 |
$ 2,400 |
$ 10,520 |
$ 42,080 |
$ 30,000 |
$ 2,400 |
$ 5,520 |
$ 22,080 |
2 |
$ 55,000 |
$ 1,600 |
$ 10,680 |
$ 42,720 |
$ 40,000 |
$ 1,600 |
$ 7,680 |
$ 30,720 |
3 |
$ 55,000 |
$ 800 |
$ 10,840 |
$ 43,360 |
$ 50,000 |
$ 800 |
$ 9,840 |
$ 39,360 |
$ 128,160 |
$ 92,160 |
|||||||
Net Present Value |
||||||||
Year |
Particulars |
Discounting Factor @ 5% |
Option 1 |
Option 2 |
||||
Cash Flow |
Discounted Cash Flow |
Cash Flow |
Discounted Cash Flow |
|||||
0 |
Initial Investment |
1 |
$ (60,000) |
$ (60,000) |
$ (60,000) |
$ (60,000) |
||
1 |
Cash Flow |
0.95 |
$ 22,080 |
$ 21,029 |
$ 2,080 |
$ 1,981 |
||
2 |
Cash Flow |
0.91 |
$ 22,720 |
$ 20,608 |
$ 10,720 |
$ 9,723 |
||
3 |
Cash Flow |
0.86 |
$ 23,360 |
$ 20,179 |
$ 19,360 |
$ 16,724 |
||
Net Present Value |
$ 1,816 |
$ (31,572) |