In: Finance
Find portfolio variance You invest $6,000 in the stock and $4,000 in the bond
outcome | P | Rs | Rb |
---|---|---|---|
recession | 30% | -11% | 16% |
normal | 40% | 13% | 6% |
boom | 30% | 27% | -4% |
Stock | ||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% |
Recession | 0.3 | -11 | -3.3 | -21 |
Normal | 0.4 | 13 | 5.2 | 3 |
Boom | 0.3 | 27 | 8.1 | 17 |
Expected return %= | sum of weighted return = | 10 | Sum=Variance Stock= | |
Standard deviation of Stock% | =(Variance)^(1/2) | |||
Bond | ||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% |
Recession | 0.3 | 16 | 4.8 | 10 |
Normal | 0.4 | 6 | 2.4 | 0 |
Boom | 0.3 | -4 | -1.2 | -10 |
Expected return %= | sum of weighted return = | 6 | Sum=Variance Bond= | |
Standard deviation of Bond% | =(Variance)^(1/2) | |||
Covariance Stock Bond: | ||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability |
Recession | 0.3 | -21 | 10 | -0.0063 |
Normal | 0.4 | 3 | 0 | 0 |
Boom | 0.3 | 17 | -10 | -0.0051 |
Covariance=sum= | -0.0114 | |||
Correlation A&B= | Covariance/(std devA*std devB)= | -0.98643085 | ||
Expected return%= | Wt Stock*Return Stock+Wt Bond*Return Bond | |||
Expected return%= | 0.6*10+0.4*6 | |||
Expected return%= | 8.4 | |||
Variance | =( w2A*σ2(RA) + w2B*σ2(RB) + 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB)) | |||
Variance | =0.6^2*0.1492^2+0.4^2*0.07746^2+2*0.6*0.4*0.1492*0.07746*-0.98643 | |||
Variance | 0.0035 |