Question

In: Mechanical Engineering

Consider a large tank holding 50 gal of pure water into which a brine solution of...

Consider a large tank holding 50 gal of pure water into which a brine solution of salt begins to flow at a constant rate of 6 gal/min. the brine leaves the tank at a rate of 5 gal/min. If the concentration of salt in the brine entering the tank is 0.1 lbs per gallon, determine the function X that will determine the amount of brine in the tank at any time t.

Solutions

Expert Solution


Related Solutions

A tank contains 100 gal of water. Brine enters the tank at the rate of 3...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3 gal/min. The mixture, thoroughly stirred, leaves the tank at the rate of 2 gal/min. If the salt concentration in the brine at the end of 20 minutes is to be 2 lb/gal, what should be the salt concentration in the brine entering the tank?
A tank contains 100 gal of water. Brine enters the tank at the rate of 3...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3 gal/min. The mixture, thoroughly stirred, leaves the tank at the rate of 2 gal/min. If the salt concentration in the brine at the end of 20 minutes is to be 2 lb/gal, what should be the salt concentration in the brine entering the tank?
A large tank holds 1000 L of water into which flows a brine solution with concentration...
A large tank holds 1000 L of water into which flows a brine solution with concentration of 1 kg / L at a rate of 6 L / min. The solution in the tank is kept well stirred and is flowing out of the tank at a rate of 5 L / min. Determine when the concentration of salt will reach 0.5 kg / L.
1. A 100-gallon tank initially holds 50 gal of brine containing 5 pounds of salt. Brine...
1. A 100-gallon tank initially holds 50 gal of brine containing 5 pounds of salt. Brine containing 1 pound of salt per gallon enters the tank at the rate of 4 gal/s, and the well-mixed brine in the tank flows out at the rate of 3 gal/s. (a) How much salt will the tank contain at the time when the tank is full of brine? (b) If the tank had an infinite capacity, what is the maximum amount of salt...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A brine containing 3 ​lb/gal of salt runs into the tank at the rate of 4 gal/min.The mixture is kept uniform by stirring and flows out of the tank at the rate of 3 gal/min. Let y represent the amount of salt at time t. Complete parts a through e. a. At what rate​ (pounds per​ minute) does salt enter the tank at time​ t?...
(62). (Transient Behavior of a Mixing tank): A tank initially holds 80 gal of a brine...
(62). (Transient Behavior of a Mixing tank): A tank initially holds 80 gal of a brine solution containing 0.125 lb of salt per gallon. At t=0, another brine solution containing 1 lb of salt per gallon is poured into the tank at a rate of 4 gal/min, while the well-stirred mixture leaves the tank at a rate of 8 gal/min. (a) Formulate a model for describing the transient behavior of the tank (b) Find the amount of salt in the...
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters...
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? (b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.)
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters...
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters the tank at a rate of 5L/min. Also, brine that contains 0.09kg of salt per liter enters the tank at a rate of 10L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15L/min. Answer the following questions. 1. How much salt is in the tank after t minutes? Answer (in kilograms): S(t)= 2. How much salt is...
(1 point) A tank is filled with 1000 liters of pure water. Brine containing 0.05 kg...
(1 point) A tank is filled with 1000 liters of pure water. Brine containing 0.05 kg of salt per liter enters the tank at 6 liters per minute. Another brine solution containing 0.07 kg of salt per liter enters the tank at 9 liters per minute. The contents of the tank are kept thoroughly mixed and the drains from the tank at 15 liters per minute. A. Determine the differential equation which describes this system. Let S(t) denote the number...
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters...
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters the tank at 2gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus the tank is empty after exactly 80 min. (A) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT