Question

In: Statistics and Probability

The part diameters are normally distributed. The lower tolerance limit corresponds to -2 z (minus two...

The part diameters are normally distributed. The lower tolerance limit corresponds to -2 z (minus two standard deviations below the mean). The upper tolerance limit corresponds to 3 z. What percent of parts will be out of tolerance? Describe the method you used to find the answers.

Solutions

Expert Solution

It is given that the part diameters are normally distributed, this means that we can apply the empirical formula in this case.

By empirical formula, we know that 99.7% of the data fall within 3 standard deviation below the mean and 3 standard deviation above the mean.

Now, tolerance range given in the question are -2z and 3z, i.e. 2 standard deviation below the mean and 3 standard deviation above the mean.

If it was -3z to +3z, then 99.7% of the parts will be within tolerance limit, but the tolerance limit given is -2z to +3z

So, we need to subtract the % of values that falls within -3z and -2z area on the normal distribution.

By empricial rule, we know that only 2.35% of the values fall within -2z and -3z. So, we can say that only 2.35% of parts will be out of tolerance as the range -2z to 3z contains remaining part diameter or 97.35% of part diameter which are within tolerance range.

We have used empirical formula or rule for normal distribution to find the % of parts that will be out of tolerance.


Related Solutions

The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.34 millimeters and a standard deviation of 0.03 millimeters. Find the two diameters that separate the top 8% and the bottom 8%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary
The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.58 millimeters and a standard deviation of 0.04 millimeters. Find the two diameters that separate the top 5%and the bottom 5%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary. Answer TablesKeypad If you would like to look up the value in a table, select the table you want to...
The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.67 millimeters and a standard deviation of 0.03 millimeters. Find the two diameters that separate the top 9% and the bottom 9%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary.
The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.18 millimeters and a standard deviation of 0.07 millimeters. Find the two diameters that separate the top 3% and the bottom 3%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary.
The diameters of Red Delicious apples in a certain orchard are normally distributed with a mean...
The diameters of Red Delicious apples in a certain orchard are normally distributed with a mean of 2.63 inches and a standard deviation of 0.25 inches. a. What percentage of the apples in the orchard have diameters less than 1.95 inches? b. What percentage of the apples in the orchard have diameters larger than 2.90 inches? c. If a crate of 200 apples is selected from the orchard, approximately how many apples would you expect to have diameters greater than...
The diameters of ball bearings are distributed normally. The mean diameter is 89 millimeters and the...
The diameters of ball bearings are distributed normally. The mean diameter is 89 millimeters and the standard deviation is 5 millimeters. Find the probability that the diameter of a selected bearing is between 91 and 97 millimeters. Round your answer to four decimal places.
1)The diameters of bolts produced by a certain machine are normally distributed with a mean of...
1)The diameters of bolts produced by a certain machine are normally distributed with a mean of 0.30 inches and a standard deviation of 0.01 inches. What is the probability of selecting a bolt at random that has a diameter larger than 0.328 inches? 2) The diameters of pencils produced by a certain machine are normally distributed with a mean of 0.30 inches and a standard deviation of 0.01 inches. What is the probability that the diameter of a randomly selected...
A company manufactures rods whose diameters are normally distributed with a mean of 5 mm and...
A company manufactures rods whose diameters are normally distributed with a mean of 5 mm and a standard deviation of 0.05 mm. It also drills holes to receive the rods and the diameters of these holes are normally distributed with a mean of 5.2 mm and a standard deviation of 0.07 mm. The rods are allocated to the holes at random. What proportion of rods will fit into the holes?
Assume that round widgets from a manufacturing process have diameters that are normally distributed with mean...
Assume that round widgets from a manufacturing process have diameters that are normally distributed with mean 175.25 centimeters and standard deviation 2.35 centimeters. The chances that a randomly selected widget has diameter less than 166 centimeters is closest to which of the following? a. 1 out of 25,000 b. 1 out of 50,000 c. 1 out of 5,000 d. 1 out of 1,000
Assume that round widgets from a manufacturing process have diameters that are normally distributed with mean...
Assume that round widgets from a manufacturing process have diameters that are normally distributed with mean 175.25 centimeters and standard deviation 2.35 centimeters. The chances that a randomly selected widget has diameter less than 166 centimeters is closest to which of the following
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT