In: Statistics and Probability
Run a regression analysis on the following bivariate set of data with y as the response variable. x y 37.2 26.9 66.2 41.4 80.9 37.6 83.7 45 55 31.2 46.3 29.1 82 44.1 71.6 36.1 54.7 29.3 56.4 33.8 Predict what value (on average) for the response variable will be obtained from a value of 45.1 as the explanatory variable. Use a significance level of α = 0.05 to assess the strength of the linear correlation. What is the predicted response value? (Report answer accurate to one decimal place.)
we have given data ,
x | y |
37.2 | 26.9 |
80.9 | 37.6 |
83.7 | 45 |
55 | 31.2 |
46.3 | 29.1 |
82 | 44.1 |
71.6 | 36.1 |
54.7 | 29.3 |
56.4 | 33.8 |
Regression Analysis: y versus x
Analysis of Variance
Source DF Seq SS Contribution Adj SS Adj MS F-Value
P-Value
Regression 1 298.33 87.96% 298.33 298.332 51.14 0.000
x 1 298.33 87.96% 298.33 298.332 51.14 0.000
Error 7 40.84 12.04% 40.84 5.834
Total 8 339.17 100.00%
Model Summary
S R-sq R-sq(adj) PRESS R-sq(pred)
2.41532 87.96% 86.24% 71.9728 78.78%
Coefficients
Term Coef SE Coef 95% CI T-Value P-Value VIF
Constant 12.09 3.27 ( 4.35, 19.83) 3.69 0.008
x 0.3598 0.0503 (0.2408, 0.4787) 7.15 0.000 1.00
Regression Equation
y = 12.09 + 0.3598 x
Now ,if x= 45.1 then
y =12.09+0.3598*45.1
y=28.3
So we get predicted response value =28.3
**************************************************************************************************************