In: Finance
Run the regression of Ford returns (Y variable) on GM returns (X variable), and report the regrssion statistics | |||
Date | Ford | GM | |
1-Dec-99 | 5.52% | -1.50% | |
3-Jan-00 | -5.70% | 10.83% | |
1-Feb-00 | -16.32% | -4.99% | |
1-Mar-00 | 10.32% | 8.89% | |
3-Apr-00 | 20.27% | 13.05% | |
1-May-00 | -11.30% | -24.12% | |
1-Jun-00 | -7.81% | -17.79% | |
3-Jul-00 | 9.47% | -1.94% | |
1-Aug-00 | -9.18% | 23.95% | |
1-Sep-00 | 5.42% | -7.14% | |
2-Oct-00 | 3.63% | -4.43% | |
1-Nov-00 | -12.89% | -19.61% | |
1-Dec-00 | 3.02% | 2.89% | |
2-Jan-01 | 21.56% | 5.43% | |
1-Feb-01 | -3.29% | 4.56% | |
Intercept | |||
Slope | |||
R-squared value |
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.405741 | |||||||
R Square | 0.164626 | |||||||
Adjusted R Square | 0.100366 | |||||||
Standard Error | 0.110263 | |||||||
Observations | 15 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 0.031147 | 0.031147 | 2.561886 | 0.133478 | |||
Residual | 13 | 0.158054 | 0.012158 | |||||
Total | 14 | 0.189201 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 0.011359 | 0.028527 | 0.398176 | 0.696963 | -0.05027 | 0.072987 | -0.05027 | 0.072987 |
GM | 0.36224 | 0.226317 | 1.600589 | 0.133478 | -0.12669 | 0.851168 | -0.12669 | 0.851168 |
Intercept = 0.011359
Slope = 0.36224
R squared = 0.164626
Incase of any doubt, please comment. I will get back to you. Thank you!! Have a nice day