| 
Stock A | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Return% | 
=rate of return% * probability | 
Actual return -expected return(A)% | 
(A)^2* probability | 
 | 
| 
Boom | 
0.15 | 
35 | 
5.25 | 
21.8 | 
0.0071286 | 
 | 
| 
Good | 
0.55 | 
16 | 
8.8 | 
2.8 | 
0.0004312 | 
 | 
| 
Poor | 
0.25 | 
-1 | 
-0.25 | 
-14.2 | 
0.005041 | 
 | 
| 
Bust | 
0.05 | 
-12 | 
-0.6 | 
-25.2 | 
0.0031752 | 
 | 
| 
 | 
Expected return %= | 
sum of weighted return = | 
13.2 | 
Sum=Variance Stock A= | 
0.01578 | 
 | 
| 
 | 
 | 
 | 
Standard deviation of Stock A% | 
=(Variance)^(1/2) | 
12.56 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
Stock B | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Return% | 
=rate of return% * probability | 
Actual return -expected return(A)% | 
(B)^2* probability | 
 | 
| 
Boom | 
0.15 | 
45 | 
6.75 | 
35.25 | 
0.018638438 | 
 | 
| 
Good | 
0.55 | 
10 | 
5.5 | 
0.25 | 
3.4375E-06 | 
 | 
| 
Poor | 
0.25 | 
-6 | 
-1.5 | 
-15.75 | 
0.006201563 | 
 | 
| 
Bust | 
0.05 | 
-20 | 
-1 | 
-29.75 | 
0.004425313 | 
 | 
| 
 | 
Expected return %= | 
sum of weighted return = | 
9.75 | 
Sum=Variance Stock B= | 
0.02927 | 
 | 
| 
 | 
 | 
 | 
Standard deviation of Stock B% | 
=(Variance)^(1/2) | 
17.11 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
Stock C | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Return% | 
=rate of return% * probability | 
Actual return -expected return(A)% | 
(C)^2* probability | 
 | 
| 
Boom | 
0.15 | 
27 | 
4.05 | 
20 | 
0.006 | 
 | 
| 
Good | 
0.55 | 
8 | 
4.4 | 
1 | 
5.5E-05 | 
 | 
| 
Poor | 
0.25 | 
-4 | 
-1 | 
-11 | 
0.003025 | 
 | 
| 
Bust | 
0.05 | 
-9 | 
-0.45 | 
-16 | 
0.00128 | 
 | 
| 
 | 
Expected return %= | 
sum of weighted return = | 
7 | 
Sum=Variance Stock C= | 
0.01036 | 
 | 
| 
 | 
 | 
 | 
Standard deviation of Stock C% | 
=(Variance)^(1/2) | 
10.18 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Covariance
Stock A Stock B: | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Actual return% -expected return% for A(A) | 
Actual return% -expected return% For B(B) | 
(A)*(B)*probability | 
 | 
 | 
| 
Boom | 
0.15 | 
21.8000 | 
35.25 | 
0.01152675 | 
 | 
 | 
| 
Good | 
0.55 | 
2.8 | 
0.25 | 
0.0000385 | 
 | 
 | 
| 
Poor | 
0.25 | 
-14.20 | 
-15.75 | 
0.00559125 | 
 | 
 | 
| 
Bust | 
0.05 | 
-2520.00% | 
-29.75 | 
0.0037485 | 
 | 
 | 
| 
 | 
 | 
 | 
Covariance=sum= | 
0.020905 | 
 | 
 | 
| 
 | 
 | 
Correlation A&B= | 
Covariance/(std devA*std devB)= | 
0.972858405 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Covariance
Stock A Stock C: | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Actual return% -expected return% for A(A) | 
Actual return% -expected return% for C(C) | 
(A)*(C)*probability | 
 | 
 | 
| 
Boom | 
0.15 | 
21.8 | 
20 | 
0.00654 | 
 | 
 | 
| 
Good | 
0.55 | 
2.8 | 
1 | 
0.000154 | 
 | 
 | 
| 
Poor | 
0.25 | 
-1420.00% | 
-11 | 
0.003905 | 
 | 
 | 
| 
Bust | 
0.05 | 
-25.2 | 
-16 | 
0.002016 | 
 | 
 | 
| 
 | 
 | 
 | 
Covariance=sum= | 
0.012615 | 
 | 
 | 
| 
 | 
 | 
Correlation A&C= | 
Covariance/(std devA*std devC)= | 
0.986754074 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Covariance
Stock B Stock C: | 
 | 
 | 
 | 
 | 
 | 
| 
Scenario | 
Probability | 
Actual return% -expected return% For B(B) | 
Actual return% -expected return% for C(C) | 
(B)*(C)*probability | 
 | 
 | 
| 
Boom | 
0.15 | 
35.25 | 
20 | 
0.010575 | 
 | 
 | 
| 
Good | 
0.55 | 
0.25 | 
1 | 
0.00001375 | 
 | 
 | 
| 
Poor | 
0.25 | 
-15.75 | 
-11 | 
0.00433125 | 
 | 
 | 
| 
Bust | 
0.05 | 
-29.75 | 
-16 | 
0.00238 | 
 | 
 | 
| 
 | 
 | 
 | 
Covariance=sum= | 
0.0173 | 
 | 
 | 
| 
 | 
 | 
Correlation B&C= | 
Covariance/(std devB*std devC)= | 
0.993491459 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
Expected return%= | 
Wt Stock
A*Return Stock A+Wt Stock B*Return Stock B+Wt Stock C*Return Stock
C | 
 | 
| 
 | 
Expected return%= | 
0.3*13.2+0.4*9.75+0.3*7 | 
 | 
 | 
 | 
| 
 | 
a. Expected return%= | 
9.96 | 
 | 
 | 
 | 
 | 
| 
 | 
Variance | 
=w2A*σ2(RA)
+ w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) +
2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC,
RB)*σ(RC)*σ(RB) | 
| 
 | 
Variance | 
=0.3^2*0.1256^2+0.4^2*0.17108^2+0.3^2*0.10178^2+2*(0.3*0.4*0.1256*0.17108*0.97286+0.4*0.3*0.17108*0.10178*0.99349+0.3*0.3*0.98675*0.1256*0.10178) | 
| 
 | 
b. Variance | 
0.01848 | 
 | 
 | 
 | 
 | 
| 
 | 
Standard deviation= | 
(variance)^0.5 | 
 | 
 | 
 | 
 | 
| 
 | 
c. Standard deviation= | 
13.59% | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 |