Stock A |
|
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(A)^2* probability |
|
Boom |
0.15 |
35 |
5.25 |
21.8 |
0.0071286 |
|
Good |
0.55 |
16 |
8.8 |
2.8 |
0.0004312 |
|
Poor |
0.25 |
-1 |
-0.25 |
-14.2 |
0.005041 |
|
Bust |
0.05 |
-12 |
-0.6 |
-25.2 |
0.0031752 |
|
|
Expected return %= |
sum of weighted return = |
13.2 |
Sum=Variance Stock A= |
0.01578 |
|
|
|
|
Standard deviation of Stock A% |
=(Variance)^(1/2) |
12.56 |
|
|
|
|
|
|
|
|
Stock B |
|
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(B)^2* probability |
|
Boom |
0.15 |
45 |
6.75 |
35.25 |
0.018638438 |
|
Good |
0.55 |
10 |
5.5 |
0.25 |
3.4375E-06 |
|
Poor |
0.25 |
-6 |
-1.5 |
-15.75 |
0.006201563 |
|
Bust |
0.05 |
-20 |
-1 |
-29.75 |
0.004425313 |
|
|
Expected return %= |
sum of weighted return = |
9.75 |
Sum=Variance Stock B= |
0.02927 |
|
|
|
|
Standard deviation of Stock B% |
=(Variance)^(1/2) |
17.11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Stock C |
|
|
|
|
|
|
Scenario |
Probability |
Return% |
=rate of return% * probability |
Actual return -expected return(A)% |
(C)^2* probability |
|
Boom |
0.15 |
27 |
4.05 |
20 |
0.006 |
|
Good |
0.55 |
8 |
4.4 |
1 |
5.5E-05 |
|
Poor |
0.25 |
-4 |
-1 |
-11 |
0.003025 |
|
Bust |
0.05 |
-9 |
-0.45 |
-16 |
0.00128 |
|
|
Expected return %= |
sum of weighted return = |
7 |
Sum=Variance Stock C= |
0.01036 |
|
|
|
|
Standard deviation of Stock C% |
=(Variance)^(1/2) |
10.18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock A Stock B: |
|
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% for A(A) |
Actual return% -expected return% For B(B) |
(A)*(B)*probability |
|
|
Boom |
0.15 |
21.8000 |
35.25 |
0.01152675 |
|
|
Good |
0.55 |
2.8 |
0.25 |
0.0000385 |
|
|
Poor |
0.25 |
-14.20 |
-15.75 |
0.00559125 |
|
|
Bust |
0.05 |
-2520.00% |
-29.75 |
0.0037485 |
|
|
|
|
|
Covariance=sum= |
0.020905 |
|
|
|
|
Correlation A&B= |
Covariance/(std devA*std devB)= |
0.972858405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock A Stock C: |
|
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% for A(A) |
Actual return% -expected return% for C(C) |
(A)*(C)*probability |
|
|
Boom |
0.15 |
21.8 |
20 |
0.00654 |
|
|
Good |
0.55 |
2.8 |
1 |
0.000154 |
|
|
Poor |
0.25 |
-1420.00% |
-11 |
0.003905 |
|
|
Bust |
0.05 |
-25.2 |
-16 |
0.002016 |
|
|
|
|
|
Covariance=sum= |
0.012615 |
|
|
|
|
Correlation A&C= |
Covariance/(std devA*std devC)= |
0.986754074 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Covariance
Stock B Stock C: |
|
|
|
|
|
Scenario |
Probability |
Actual return% -expected return% For B(B) |
Actual return% -expected return% for C(C) |
(B)*(C)*probability |
|
|
Boom |
0.15 |
35.25 |
20 |
0.010575 |
|
|
Good |
0.55 |
0.25 |
1 |
0.00001375 |
|
|
Poor |
0.25 |
-15.75 |
-11 |
0.00433125 |
|
|
Bust |
0.05 |
-29.75 |
-16 |
0.00238 |
|
|
|
|
|
Covariance=sum= |
0.0173 |
|
|
|
|
Correlation B&C= |
Covariance/(std devB*std devC)= |
0.993491459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Expected return%= |
Wt Stock
A*Return Stock A+Wt Stock B*Return Stock B+Wt Stock C*Return Stock
C |
|
|
Expected return%= |
0.3*13.2+0.4*9.75+0.3*7 |
|
|
|
|
a. Expected return%= |
9.96 |
|
|
|
|
|
Variance |
=w2A*σ2(RA)
+ w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) +
2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC,
RB)*σ(RC)*σ(RB) |
|
Variance |
=0.3^2*0.1256^2+0.4^2*0.17108^2+0.3^2*0.10178^2+2*(0.3*0.4*0.1256*0.17108*0.97286+0.4*0.3*0.17108*0.10178*0.99349+0.3*0.3*0.98675*0.1256*0.10178) |
|
b. Variance |
0.01848 |
|
|
|
|
|
Standard deviation= |
(variance)^0.5 |
|
|
|
|
|
c. Standard deviation= |
13.59% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|