In: Economics
Carbon dioxide (CO2) emissions are widely believed to be a driver of global climate change. In this problem set you will use cross-section data to test what drives countries’ “carbon footprints,” that is, their CO2 emissions. Is it population, or is income the bigger culprit?
The data set “CO2 by country 2010 sh S17” contains data on a sample of countries’ CO2 emissions, in kilotons; population, in millions; and gross national income (GNI), in millions of US dollars, for the year 2010.
1. Please propose a linear regression model to estimate the effect of GNI on predicted CO2 emissions. Propose an economic theory to justify this model of CO2 emissions as a function of GNI and explain what the parameters and variables in this model represent.
2.Now estimate this model in Excel, like we did in class, using ordinary least squares. Report and interpret your estimated parameters here. Specifically, what does each parameter estimate tell us?
Country Name |
CO2(kt) | POP(millions) | GNI(Millions of US$) |
United States | 5433056.54 | 309.33 | 15170300.00 |
Afghanistan | 8236.08 | 28.40 | 15998.78 |
Albania | 4283.06 | 2.86 | 11807.46 |
Algeria | 123475.22 | 37.06 | 160996.42 |
Angola | 30417.77 | 19.55 | 73946.34 |
Argentina | 180511.74 | 40.37 | 451417.86 |
Armenia | 4220.72 | 2.96 | 9718.57 |
Australia | 373080.58 | 22.03 | 1096901.32 |
Austria | 66897.08 | 8.39 | 393108.52 |
Bahamas, The | 2464.22 | 0.36 | 7702.50 |
Bahrain | 24202.20 | 1.25 | 23340.38 |
Bangladesh | 56152.77 | 151.13 | 124617.10 |
Barbados | 1503.47 | 0.28 | 4321.85 |
Belarus | 62221.66 | 9.49 | 54058.30 |
Belgium | 108946.57 | 10.92 | 493427.31 |
Belize | 421.71 | 0.31 | 1258.61 |
Benin | 5188.81 | 9.51 | 6508.31 |
Bermuda | 476.71 | 0.07 | 7201.48 |
Bhutan | 476.71 | 0.72 | 1497.42 |
Bolivia | 15456.41 | 10.16 | 18785.53 |
Botswana | 5232.81 | 1.97 | 13197.27 |
Brazil | 419754.16 | 195.21 | 2104398.02 |
Bulgaria | 44678.73 | 7.40 | 47167.59 |
Burkina Faso | 1683.15 | 15.54 | 9202.85 |
Burundi | 308.03 | 9.23 | 2014.76 |
Cabo Verde | 355.70 | 0.49 | 1591.15 |
Cambodia | 4180.38 | 14.36 | 10698.07 |
Cameroon | 7234.99 | 20.62 | 23358.49 |
Canada | 499137.37 | 34.01 | 1582763.45 |
Central African Republic | 264.02 | 4.35 | 1981.47 |
Chad | 469.38 | 11.72 | 10302.35 |
Chile | 72258.24 | 17.15 | 202873.97 |
China | 8286891.95 | 1337.71 | 5904605.99 |
Colombia | 75679.55 | 46.44 | 275790.73 |
Congo, Dem. Rep. | 3039.94 | 62.19 | 20651.16 |
Congo, Rep. | 2027.85 | 4.11 | 9024.21 |
Costa Rica | 7770.37 | 4.67 | 35553.17 |
Cote d'Ivoire | 5804.86 | 18.98 | 23972.20 |
Croatia | 20883.57 | 4.42 | 57968.36 |
Cuba | 38364.15 | 11.28 | 63388.65 |
Cyprus | 7708.03 | 1.10 | 22311.52 |
Czech Republic | 111751.83 | 10.47 | 191444.66 |
Denmark | 46303.21 | 5.55 | 325079.06 |
Dominica | 135.68 | 0.07 | 483.70 |
Dominican Republic | 20964.24 | 10.02 | 51355.94 |
Ecuador | 32636.30 | 15.00 | 68517.07 |
Egypt, Arab Rep. | 204776.28 | 78.08 | 214525.02 |
El Salvador | 6248.57 | 6.22 | 20868.00 |
Equatorial Guinea | 4679.09 | 0.70 | 9630.16 |
Estonia | 18338.67 | 1.33 | 18239.97 |
Ethiopia | 6494.26 | 87.10 | 29825.57 |
Fiji | 1290.78 | 0.86 | 3043.13 |
Finland | 61843.96 | 5.36 | 251109.55 |
France | 361272.84 | 65.02 | 2700865.68 |
Gabon | 2574.23 | 1.56 | 12869.57 |
Gambia, The | 473.04 | 1.68 | 921.90 |
Germany | 745383.76 | 81.78 | 3483764.77 |
Ghana | 8998.82 | 24.26 | 31641.07 |
Greece | 86717.22 | 11.15 | 293454.05 |
Grenada | 260.36 | 0.10 | 731.14 |
Guatemala | 11118.34 | 14.34 | 40126.71 |
Guinea | 1235.78 | 10.88 | 4302.27 |
Guyana | 1701.49 | 0.79 | 2272.06 |
Haiti | 2119.53 | 9.90 | 6644.82 |
Honduras | 8107.74 | 7.62 | 15110.48 |
Hong Kong SAR, China | 36288.63 | 7.02 | 233476.93 |
Hungary | 50582.60 | 10.00 | 123537.26 |
Iceland | 1961.85 | 0.32 | 11112.24 |
India | 2008822.94 | 1205.62 | 1690503.86 |
Indonesia | 433989.45 | 240.68 | 689283.20 |
Iraq | 114667.09 | 30.96 | 140108.12 |
Ireland | 39999.64 | 4.56 | 183661.91 |
Israel | 70655.76 | 7.62 | 227769.19 |
Italy | 406307.27 | 59.28 | 2121166.42 |
Jamaica | 7157.98 | 2.69 | 12736.32 |
Japan | 1170715.42 | 127.45 | 5643192.13 |
Jordan | 20821.23 | 6.05 | 26218.06 |
Kazakhstan | 248728.94 | 16.32 | 128676.48 |
Kenya | 12427.46 | 40.91 | 39852.51 |
Korea, Rep. | 567567.26 | 49.41 | 1095599.47 |
Kuwait | 93695.52 | 2.99 | 126113.71 |
Lao PDR | 1873.84 | 6.40 | 6713.29 |
Latvia | 7616.36 | 2.10 | 24579.69 |
Lebanon | 20403.19 | 4.34 | 37501.05 |
Lesotho | 18.34 | 2.01 | 2594.04 |
Liberia | 799.41 | 3.96 | 1113.30 |
Lithuania | 13560.57 | 3.10 | 35969.96 |
Luxembourg | 10828.65 | 0.51 | 34073.20 |
Macao SAR, China | 1030.43 | 0.53 | 25370.95 |
Macedonia, FYR | 10872.66 | 2.10 | 9207.39 |
Madagascar | 2013.18 | 21.08 | 8643.30 |
Malawi | 1239.45 | 15.01 | 5290.12 |
Malaysia | 216804.04 | 28.28 | 239358.02 |
Maldives | 1074.43 | 0.33 | 1822.80 |
Mali | 623.39 | 13.99 | 9003.28 |
Marshall Islands | 102.68 | 0.05 | 198.24 |
Mauritania | 2214.87 | 3.61 | 3444.76 |
Mauritius | 4118.04 | 1.28 | 9835.24 |
Mexico | 443674.00 | 117.89 | 1042119.87 |
Micronesia, Fed. Sts. | 102.68 | 0.10 | 305.08 |
Moldova | 4855.11 | 3.56 | 6316.18 |
Mongolia | 11510.71 | 2.71 | 5640.28 |
Montenegro | 2581.57 | 0.62 | 4086.06 |
Morocco | 50608.27 | 31.64 | 88304.87 |
Mozambique | 2882.26 | 23.97 | 9834.28 |
Namibia | 3175.62 | 2.18 | 10766.65 |
Nepal | 3755.01 | 26.85 | 16116.35 |
Netherlands | 182077.55 | 16.62 | 841677.04 |
New Zealand | 31550.87 | 4.37 | 136188.35 |
Nicaragua | 4547.08 | 5.82 | 8699.55 |
Niger | 1411.80 | 15.89 | 5674.42 |
Nigeria | 78910.17 | 159.71 | 349387.81 |
Norway | 57186.87 | 4.89 | 425901.89 |
Oman | 57201.53 | 2.80 | 50227.83 |
Pakistan | 161395.67 | 173.15 | 183913.43 |
Palau | 216.35 | 0.02 | 190.20 |
Panama | 9633.21 | 3.68 | 30229.00 |
Papua New Guinea | 3135.29 | 6.86 | 9262.47 |
Paraguay | 5075.13 | 6.46 | 18618.46 |
Peru | 57579.23 | 29.26 | 137317.44 |
Philippines | 81590.75 | 93.44 | 265929.44 |
Poland | 317254.17 | 38.18 | 458863.46 |
Portugal | 52361.09 | 10.57 | 230038.36 |
Romania | 78745.16 | 20.25 | 162254.86 |
Russian Federation | 1740776.24 | 142.39 | 1477812.94 |
Rwanda | 594.05 | 10.84 | 5656.02 |
Samoa | 161.35 | 0.19 | 622.45 |
Sao Tome and Principe | 99.01 | 0.18 | 200.67 |
Saudi Arabia | 464480.56 | 27.26 | 533855.47 |
Senegal | 7058.98 | 12.95 | 12799.08 |
Serbia | 45962.18 | 7.29 | 38478.03 |
Seychelles | 704.06 | 0.09 | 926.08 |
Sierra Leone | 689.40 | 5.75 | 2606.60 |
Singapore | 13520.23 | 5.08 | 235074.91 |
Slovenia | 15328.06 | 2.05 | 47507.02 |
Solomon Islands | 201.69 | 0.53 | 508.30 |
South Africa | 460124.16 | 50.90 | 357979.72 |
Spain | 269674.85 | 46.58 | 1411515.96 |
Sri Lanka | 12709.82 | 20.65 | 48950.36 |
St. Kitts and Nevis | 249.36 | 0.05 | 663.27 |
St. Lucia | 403.37 | 0.18 | 1204.73 |
St. Vincent and the Grenadines | 209.02 | 0.11 | 668.95 |
Sudan | 14172.96 | 35.65 | 60504.61 |
Suriname | 2383.55 | 0.52 | 4330.41 |
Swaziland | 1023.09 | 1.19 | 3802.06 |
Sweden | 52515.11 | 9.38 | 501832.93 |
Switzerland | 38756.52 | 7.82 | 616380.88 |
Tajikistan | 2860.26 | 7.63 | 5563.45 |
Tanzania | 6846.29 | 44.97 | 22626.29 |
Thailand | 295281.51 | 66.40 | 305180.57 |
Timor-Leste | 183.35 | 1.07 | 3295.00 |
Togo | 1540.14 | 6.31 | 2761.61 |
Tonga | 157.68 | 0.10 | 373.17 |
Trinidad and Tobago | 50681.61 | 1.33 | 19669.16 |
Tunisia | 25878.02 | 10.55 | 42169.55 |
Turkey | 298002.42 | 72.14 | 723965.76 |
Turkmenistan | 53054.16 | 5.04 | 20254.04 |
Uganda | 3784.34 | 33.99 | 15713.33 |
Ukraine | 304804.71 | 45.87 | 134410.29 |
United Arab Emirates | 167596.57 | 8.44 | 285949.29 |
United Kingdom | 493504.86 | 62.77 | 2434464.28 |
Uruguay | 6644.60 | 3.37 | 37378.59 |
Uzbekistan | 104443.49 | 28.56 | 40491.77 |
Venezuela, RB | 201747.34 | 29.04 | 387497.39 |
Vietnam | 150229.66 | 86.93 | 111512.78 |
West Bank and Gaza | 2365.22 | 3.81 | 9512.20 |
Yemen, Rep. | 21851.65 | 22.76 | 29984.28 |
Zambia | 2427.55 | 13.22 | 18902.38 |
Zimbabwe | 9427.86 | 13.08 |
9263.90 |
1) GNI is the total amount of money that is earned by a nation. It includes both GDP and the income received from abroad. GNI can be taken as an indicator of economic growth in the economy
Carbon emission is the emission from bringing fossil fuels and the manufacture of cement. This also includes the carbon dioxide produced during the consumption and production of solid, liquid, and gas fuels and also gas flarings.
Regression analysis can be done to understand the impact of economic growth and increasing population on carbon emissions. the regression equation would be
CO2= a+ GNI+ Population
Where Carbon emissions would be a dependent variable and GNI and population. would be an independent variable. This can be backed by an economic explanation as well. Economic growth and preserving environmental growth together is always a challenge. Economic growth always has pressure on the environment. This high pressure leads to environmental deterioration. When the economy grows, associated with that the industrial sector of the economy increases as well. The carbon dioxide is released more due to these industrial activities. These effects will be even more if the companies haven't employed environmentally friendly techniques that improved environmental quality. A proper balance between economic growth and carbon emissions is needed for the sustainable growth of the economy. Hence a regression model would help to understand the magnitude of the effect of economic growth on carbon emissions.
Along with economic growth increasing population also has an impact on carbon emission. Carbon emissions are caused by both consumption and production of fossil fuels. An increased population increases the number of resources used and also increases the demand for products which will have an effect on the production side and thus lead to more carbon emissions.
2. By using the Least square methods, the data was regressed in excel. The regression equation derived by the analysis is as follows
CO2 = 12853.84 + 0.4421 GNI
CO2 is the dependent variable and GNI is the independent variable. 0.4421 is the slope of the regression line and 12853 is the intercept. The slope of the line shows the changes in carbon emissions due to the change in GNI. The regression equation shows that a 1 unit increase in GNI will lead to a 0.44 unit increase in carbon emissions.