Question

In: Economics

Consider the following asymmetric-information model of Bertrand duopoly with differentiated products. Demand for firm i is...

Consider the following asymmetric-information model of Bertrand duopoly with differentiated products. Demand for firm i is qi(pi,pj) = a−pi + bi ·pj. Costs are zero for both firms. The sensitivity of firm i’s demand to firm j’s price is either high or low. That is, bi is either bH or bL, where bH > bL > 0. For each firm, bi = bH with probability θ and bi = bL with probability 1−θ, independent of the realization of bj. Each firm knows its own bi but not its competitor’s. All of this is common knowledge.

What conditions define a symmetric pure-strategy Bayesian Nash equilibrium of this game? Solve for such an equilibrium

Solutions

Expert Solution


Related Solutions

Recall the static Bertrand duopoly model (with homogenous products): the firms name prices simultaneously; demand for...
Recall the static Bertrand duopoly model (with homogenous products): the firms name prices simultaneously; demand for firm i's product is a - pi if pi < pj, is 0 if pi > pj, and is (a-pi)/2 if pi = pj; marginal costs are c < a. Consider the infinitely repeated game based on this stage game. Show that the firms can use trigger strategies (that switch forever to the stage-game Nash equilibrium after any deviation) to sustain the monopoly price...
) Consider a Bertrand duopoly where ?? , ?? and ??(?? ) = ??? are quantity,...
) Consider a Bertrand duopoly where ?? , ?? and ??(?? ) = ??? are quantity, price and total cost, respectively, for firm ? ∈ {1,2} where ? > 0. Assume neither firm has a capacity constraint. a. Derive the equilibrium quantities and prices if the products are undifferentiated. b. Derive the equilibrium quantities and prices if the products are differentiated such that residual inverse demand for firm ? is ?? = ?? − ???? + ???? given the price...
In the Bertrand duopoly, market demand is Q = ? ? Bp, and firms have no...
In the Bertrand duopoly, market demand is Q = ? ? Bp, and firms have no fixed costs and identical marginal cost. Find a Bertrand equilibrium pair of prices, (p1 , p2 ), and quantities, (q1, q2), when the following hold. a. Firm1 has fixed costs F>0. b. Both firms have fixed costs F > 0. c. Fixed costs are zero, but firm 1 has lower marginal cost than firm 2, so c2 > c1 > 0. (For this one,...
Problem 1: Consider the following Bertrand duopoly: two firms (A and B) are operating in a...
Problem 1: Consider the following Bertrand duopoly: two firms (A and B) are operating in a market where they produce identical products and compete on price. Assume that the market demand can be written as ? = 50 − ?. Assume that neither firm is capacity constrained so that either firm can satisfy the market demand at any price. Suppose further that the profit function for each firm can be written as ? = ?? − ?? = (? −...
In the Bertrand duopoly, market demand is Q = a-Bp, and firms have no fixed costs...
In the Bertrand duopoly, market demand is Q = a-Bp, and firms have no fixed costs and identical marginal cost. Find a Bertrand equilibrium pair of prices, (p1 , p2 ), and quantities, (q1, q2), when the following hold. a. Firm1 has fixed costs F>0. b. Both firms have fixed costs F > 0. c. Fixed costs are zero, but firm 1 has lower marginal cost than firm 2, so c2 > c1 > 0. (For this one, assume the...
In the Bertrand duopoly, market demand is Q = a-Bp, and firms have no fixed costs...
In the Bertrand duopoly, market demand is Q = a-Bp, and firms have no fixed costs and identical marginal cost. Find a Bertrand equilibrium pair of prices, (p1 , p2 ), and quantities, (q1, q2), when the following hold. a. Firm1 has fixed costs F>0. b. Both firms have fixed costs F > 0. c. Fixed costs are zero, but firm 1 has lower marginal cost than firm 2, so c2 > c1 > 0. (For this one, assume the...
Two identical firms compete in a Bertrand duopoly. The firms produce identical products at the same...
Two identical firms compete in a Bertrand duopoly. The firms produce identical products at the same constant marginal cost of MC = $10. There are 2000 identical consumers, each with the same reservation price of $30 for a single unit of the product (and $0 for any additional units). Under all of the standard assumptions made for the Bertrand model, the equilibrium prices would be Group of answer choices $10 for both firms $30 for both firms $50 for both...
Consider the following variant of theBertrand Model of Duopoly. Suppose there are two firms producing the...
Consider the following variant of theBertrand Model of Duopoly. Suppose there are two firms producing the same good and they simultaneously set prices for their product. If firm i sets a price piand firm j sets a price pj, the total quantity demanded for firm i’s product is given by:qi= 10 –pi+ ½ pjEach firm produces exactly the qidemanded by the market. Bothfirms have the same marginal cost of production: c=4. For example, if a firm produces 5 units it...
I need this question solution: please 1. Consider the variant of the Hotelling ‘location-then-price’ duopoly model...
I need this question solution: please 1. Consider the variant of the Hotelling ‘location-then-price’ duopoly model (studied in lectures) in which consumers must travel to the location of the firm they choose to purchase from. The cost incurred by a consumer located at x ∈ [0,1] of travelling to location xi of firm i is given by t|x − xi | (t > 0 is the disutility or transport cost per unit of distance). Assume that firms are situated away...
Consider a Cournot duopoly with the following inverse demand function:p(Q) =a−Q where p is the price...
Consider a Cournot duopoly with the following inverse demand function:p(Q) =a−Q where p is the price of the product and Q is the total amount of goods exchanged in the market. The total costs areC(q1) = 300q1, C(q2) = 300q2 for firm 1 and firm 2, respectively. But the demand is uncertain (i.e., a new product may be introduced soon which will decrease the demand drastically). Firm 1 learns whether demand will be high (a =1800) or small (a=900) before...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT