Question

In: Mechanical Engineering

Calculate the theoretical A/F ratio for the complete combustion of propane (C3H8) on mole basis and...

Calculate the theoretical A/F ratio for the complete combustion of propane (C3H8) on mole basis and mass basis. Also, calculate the equivalence ratio for the following reaction:

C3H8 + 7O2 + 26.32N2 → 3CO2 + 4H2O + 2O2 + 26.32N2

Solutions

Expert Solution


Related Solutions

In a closed combustion vessel, propane (C3H8) and air are mixed at equivalence ratio of 1.11,...
In a closed combustion vessel, propane (C3H8) and air are mixed at equivalence ratio of 1.11, temperature of 298 K, and pressure of 1 bar. The mixture is burned to produce solely CO2, CO, H2O, and N2. The heat rejected from the vessel is 820 MJ/kmol of fuel. What are the final temperature and final pressure of the mixture? Since neither O2 nor H2 is present in the burned gas, dissociation can be neglected.
At 25°C, the standard enthalpy of combustion of gaseous propane (C3H8) is –2219.0 kJ per mole...
At 25°C, the standard enthalpy of combustion of gaseous propane (C3H8) is –2219.0 kJ per mole of propane, and the standard enthalpy of combustion of gaseous propylene (C3H6) is –2058.3 kJ per mole of propylene. What is the standard enthalpy change for the following reaction at 25°C? C3H6(g) + H2(g) → C3H8(g) Substance ∆H°f (kJ/mol) CO2(g) –393.5 H2O(l) –285.8 a) +160.7 kJ b) –160.7 kJ c) +104.7 kJ d) –20.4 kJ e) –125.1 kJ
Calculate the mole fraction when a sample of propane (C3H8) is placed in a closed vessel...
Calculate the mole fraction when a sample of propane (C3H8) is placed in a closed vessel together with an amount of O2 that is 2.15 times the amount needed to completely oxidize the propane to CO2 and H2O at constant temperature. Assume all chemical species are in the gaseous phase.
In a furnace, 76 lbs propane C3H8 are burned with 17.2% excess air for complete combustion....
In a furnace, 76 lbs propane C3H8 are burned with 17.2% excess air for complete combustion. What is the percent CO2 in combustion products? Round your answer to the one decimal place.
In a combustion device, a mixture of 82 lbs of butane and 212 lbs propane C3H8...
In a combustion device, a mixture of 82 lbs of butane and 212 lbs propane C3H8 are burned with just enough air for complete combustion. How many lbs of total combustion products are formed? Round your answer to the nearest whole number
The combustion reaction of propane is as follows. C3H8(g) + 5 O2(g) → 3 CO2(g) +...
The combustion reaction of propane is as follows. C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) Using Hess's law and the reaction enthalpies given below, find the change in enthalpy for this reaction. Answer in KJ/mol reaction (1):     C(s) + O2(g) → CO2(g)     ΔH = −393.5 kJ/mol reaction (2):     H2(g) + 1/2 O2(g) → H2O(l)     ΔH = −285.8 kJ/mol reaction (3):     3 C(s) + 4 H2(g) → C3H8(g)     ΔH = −103.8 kJ/mol
Liquid Propane (C3H8(l)) enters a combustion chamber at 25 degrees C and 1 atm at a...
Liquid Propane (C3H8(l)) enters a combustion chamber at 25 degrees C and 1 atm at a rate of 0.4 kg/min where it is mixed and burned with 150% excess air that enters the combustion chamber at 25 degrees C. The heat transfer from the combustion process is 53 kW. Determine (c) the average specific heat at constant pressure of the product gasses, and (d) the temperature of the products of combustion.
what is the theoretical basis for the mole concept used in chemistry?
what is the theoretical basis for the mole concept used in chemistry?
The combustion of n c3h8 = 100 kmol.h-1 propane gas ( pure fuel stream) takes place...
The combustion of n c3h8 = 100 kmol.h-1 propane gas ( pure fuel stream) takes place at isobaric-atmospheric conditions ( P= 1atm) in a continuous reactor, in the presence of air and using an oxygen inlet of n O2­( g) = 1000kmol.h-1 according to: C3H8 + 5O2( g) ----- 3CO2 + 4H2O The inlet gases are supplied at T=25oC, and leave the reactor at T= 300oC, according to the following values: Compound Kmol/h / outl C3H8 ( g) 50 O2...
calculate the minimum number of grams of propane, C3H8(g), that must be combusted to provide the...
calculate the minimum number of grams of propane, C3H8(g), that must be combusted to provide the energy necessary to convert 3.40 kg of ice at -16.0 ∘C to liquid water at 79.0 ∘C.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT