Question

In: Chemistry

If the temperature of an ideal gas is raised from 100°C to 200°C, while the pressure...

If the temperature of an ideal gas is raised from 100°C to 200°C, while the pressure remains constant, the volume

1.) goes to 1/2 of the original volume

2.) doubles

3.) remains the same

4.) increases by a factor of 100

5.) none of these

Solutions

Expert Solution

Initial                                                       Final

T1 = 100+ 273 = 373K                       T2 = 200+ 273 = 473K

V1 = V                                                V2   =

V1/T1   =   V2/T2

   V/373     = V2/473

    V2           = V*473/373

V2                 = 1.27V

Volume increases 1.27times

5.) none of these


Related Solutions

The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
The pressure on a sample of an ideal gas is increased from 715 mmHg to 3.55 atm at constant temperature.
  The pressure on a sample of an ideal gas is increased from 715 mmHg to 3.55 atm at constant temperature. If the initial volume of the as is 472 mL. what is the final volume of the gas?   A 4.00 L sample of gas is cooled from 71 CC to a temperature at which its volume is 2.60 L. What is this new temperature? Assume no change in pressure of the gas.   A scuba diver releases a...
Start with an ideal gas of volume 4m^3, at a pressure of 1200Pa, and temperature 289K....
Start with an ideal gas of volume 4m^3, at a pressure of 1200Pa, and temperature 289K. Construct a cycle using 3 or more processes (of your choice). For each process in your cycle calculate the Q, ?U, and W. Calculate the net change in each of these quantities for the entire cycle, and determine whether the work as a result of the cycle is done ON or BY the system.
1a. What happens to the pressure of an ideal gas if you double its temperature in...
1a. What happens to the pressure of an ideal gas if you double its temperature in a closed volume? And what happens to the pressure of an ideal gas if you double its volume at a fixed temperature?Please explain your answer using the combine gas law. 1b. Based upon the standard molar volume, what volume would 0.500 moles of an ideal gas occupy at STP? And based upon the standard molar volume, what volume would be occupied by 1.00 mol...
An ideal gas with 7 degrees of freedom begins at a pressure of 8.5 atm, temperature...
An ideal gas with 7 degrees of freedom begins at a pressure of 8.5 atm, temperature of 25 degrees Celsius and volume of 120L. A) How many moles of gas are there? B) The gas expands isobarically to 200L. What is the new temperature? C) How much work was done in the expansion? D) By how much did the internal energy increase? E) What amount of heat flowed into the gas? G) The gas then depressurizes isochorically to the original...
An ideal gas expands isobarically (constant pressure) from point A to point B. The gas is...
An ideal gas expands isobarically (constant pressure) from point A to point B. The gas is compressed isothermally (constant temperature) from point B to C. Finally, the gas goes through an isochoric (constant volume) process until it returns to point A. Given: Volume at point A = Volume at point C = 0.004 m3, Volume at point B = 0.008 m3, Pressure at point A = Pressure at point B = 1,000,000 Pa, Temperature at point A = 600 K....
Use critical temperature and pressure for oxygen gas to determine critical molar volume assuming a) ideal...
Use critical temperature and pressure for oxygen gas to determine critical molar volume assuming a) ideal gas  L/mole b) van der Waals gas  L/mole c) Redlich-Kwong gas  L/mole
Simulation : Ideal Gas Laws Objective: 1. Demonstrate the relationship between pressure, temperature, and volume for...
Simulation : Ideal Gas Laws Objective: 1. Demonstrate the relationship between pressure, temperature, and volume for the ideal gas. Equipment: phET Simulation : http://phet.colorado.edu/en/simulation/gas-properties Before you begin note the following notes and tips: You will use 200 units of substance in all activities. You can use the ruler to measure volume. Use tables with proper titles and labels to record your observations. A. In this part you will keep the volume of the container and amount of substance constant and...
100 people enter a room that is initially at a temperature of 15 C and pressure...
100 people enter a room that is initially at a temperature of 15 C and pressure of 1bar. Each person losses heat to the air in the room at a constant rate of 300 W at a constant temperature of 37 C. The air mass in the room is 750 Kg, remains constant and its cv = 0.79 kJ/(Kg K), cp = 1.08 kJ/(Kg K) and the gas constant is 0.287 kJ/(Kg K). Air enters the room at a temperature...
A 90.0cm3 box contains helium at a pressure of 1.90atm and a temperature of 100?C. It...
A 90.0cm3 box contains helium at a pressure of 1.90atm and a temperature of 100?C. It is placed in thermal contact with a 220cm3 box containing argon at a pressure of 4.30atm and a temperature of 400?C. A. What is the initial thermal energy of each gas? B. What is the final thermal energy of each gas? C. How much heat energy is transferred, and in which direction? D. What is the final temperature? E. What is the final pressure...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT