Question

In: Computer Science

QKD.

a) Explain what is meant by QKD.
b) The following eleven statements refer to the transmission of an encryption key using quantum key distribution protocols.
Put each statement into its correct sequence, 1-11. The first one has been numbered for you.

 

Solutions

Expert Solution

Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages.QKD provides a way of distributing and sharing secret keys that are necessary for cryptographic protocols. The importance here is in ensuring that they remain private, i.e. between the communicating parties.The security of QKD stems from the ability to detect any intrusion on the QKD transmission. Because of the unique and fragile properties of photons, any third party (or eavesdropper) who tries to read or copy the photons in any way will change the photons' state.

 

 

The best-known and developed application of quantum cryptography is quantum key distribution (QKD), which is the process of using quantum communication to establish a shared key between two parties (Alice and Bob, for example) without a third party (Eve) learning anything about that key, even if Eve can eavesdrop on all communication between Alice and Bob. If Eve tries to learn information about the key being established, discrepancies will arise causing Alice and Bob to notice. Once the key is established, it is then typically used for encrypted communication using classical techniques. For instance, the exchanged key could be used for symmetric cryptography (e.g. One-time pad).

The security of quantum key distribution can be proven mathematically without imposing any restrictions on the abilities of an eavesdropper, something not possible with classical key distribution. This is usually described as "unconditional security", although there are some minimal assumptions required, including that the laws of quantum mechanics apply and that Alice and Bob are able to authenticate each other, i.e. Eve should not be able to impersonate Alice or Bob as otherwise a man-in-the-middle attack would be possible.

While QKD is seemingly secure, its applications face the challenge of practicality. This is due to transmission distance and key generation rate limitations. Ongoing studies and growing technology has allowed further advancements in such limitations. In 2018 Lucamarini et al. proposed a twin-field QKD scheme that can possibly overcome the rate-loss scaling of a lossy communication channel. The rate of the twin field protocol was shown to overcome the secret key-agreement capacity of the lossy channel, known as repeater-less PLOB bound, at 340 km of optical fiber; its ideal rate surpasses this bound already at 200 km and follows the rate-loss scaling of the higher repeater-assisted secret key-agreement capacity (see figure 1 of for more details). The protocol suggests that optimal key rates are achievable on "550 kilometers of standard optical fibre", which is already commonly used in communications today. The theoretical result was confirmed in the first experimental demonstration of QKD beyond the rate-loss limit by Minder et al. in 2019, which has been characterised as the first effective quantum repeater. One of the notable developments in terms of achieving high rates at long distances is the sending-not-sending (SNS) version of the TF-QKD protocol.

 

In mistrustful cryptography the participating parties do not trust each other. For example, Alice and Bob collaborate to perform some computation where both parties enter some private inputs. But Alice does not trust Bob and Bob does not trust Alice. Thus, a secure implementation of a cryptographic task requires that after completing the computation, Alice can be guaranteed that Bob has not cheated and Bob can be guaranteed that Alice has not cheated either. Examples of tasks in mistrustful cryptography are commitment schemes and secure computations, the latter including the further examples of coin flipping and oblivious transferKey distribution does not belong to the area of mistrustful cryptography. Mistrustful quantum cryptography studies the area of mistrustful cryptography using quantum systems.

In contrast to quantum key distribution where unconditional security can be achieved based only on the laws of quantum physics, in the case of various tasks in mistrustful cryptography there are no-go theorems showing that it is impossible to achieve unconditionally secure protocols based only on the laws of quantum physics. However, some of these tasks can be implemented with unconditional security if the protocols not only exploit quantum mechanics but also special relativity. For example, unconditionally secure quantum bit commitment was shown impossible by Mayers  and by Lo and Chau.Unconditionally secure ideal quantum coin flipping was shown impossible by Lo and Chau.Moreover, Lo showed that there cannot be unconditionally secure quantum protocols for one-out-of-two oblivious transfer and other secure two-party computations. However, unconditionally secure relativistic protocols for coin flipping and bit-commitment have been shown .

One possibility to construct unconditionally secure quantum commitment and quantum oblivious transfer (OT) protocols is to use the bounded quantum storage model (BQSM). In this model, it is assumed that the amount of quantum data that an adversary can store is limited by some known constant Q. However, no limit is imposed on the amount of classical (i.e., non-quantum) data the adversary may store.

In the BQSM, one can construct commitment and oblivious transfer protocols.The underlying idea is the following: The protocol parties exchange more than Q quantum bits (qubits). Since even a dishonest party cannot store all that information (the quantum memory of the adversary is limited to Q qubits), a large part of the data will have to be either measured or discarded. Forcing dishonest parties to measure a large part of the data allows the protocol to circumvent the impossibility result, commitment and oblivious transfer protocols can now be implemented.

The protocols in the BQSM presented by Damgård, Fehr, Salvail, and Schaffner do not assume that honest protocol participants store any quantum information; the technical requirements are similar to those in quantum key distribution protocols. These protocols can thus, at least in principle, be realized with today's technology. The communication complexity is only a constant factor larger than the bound Q on the adversary's quantum memory.

The advantage of the BQSM is that the assumption that the adversary's quantum memory is limited is quite realistic. With today's technology, storing even a single qubit reliably over a sufficiently long time is difficult. (What "sufficiently long" means depends on the protocol details. By introducing an artificial pause in the protocol, the amount of time over which the adversary needs to store quantum data can be made arbitrarily large.)

An extension of the BQSM is the noisy-storage model introduced by Wehner, Schaffner and Terhal. Instead of considering an upper bound on the physical size of the adversary's quantum memory, an adversary is allowed to use imperfect quantum storage devices of arbitrary size. The level of imperfection is modelled by noisy quantum channels. For high enough noise levels, the same primitives as in the BQSM can be achieved and the BQSM forms a special case of the noisy-storage model.

In .the classical setting, similar results can be achieved when assuming a bound on the amount of classical (non-quantum) data that the adversary can store. It was proven, however, that in this model also the honest parties have to use a large amount of memory (namely the square-root of the adversary's memory bound). This makes these protocols impractical for realistic memory bounds


In .the classical setting, similar results can be achieved when assuming a bound on the amount of classical (non-quantum) data that the adversary can store. It was proven, however, that in this model also the honest parties have to use a large amount of memory (namely the square-root of the adversary's memory bound). This makes these protocols impractical for realistic memory bounds

Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT