In: Statistics and Probability
A regular six-sided die and a regular eight-sided die are rolled to find the sum. Determine the probability distribution for the sum of the two dice. Create a frequency histogram for the probability distribution and determine the expected sum of the two dice.
Solution:-
The probability distribution for the sum of the two dice.
| Sum(x) | Frequency | P(x) | 
| 2 | 1 | 0.020833 | 
| 3 | 2 | 0.041667 | 
| 4 | 3 | 0.0625 | 
| 5 | 4 | 0.083333 | 
| 6 | 5 | 0.104167 | 
| 7 | 6 | 0.125 | 
| 8 | 6 | 0.125 | 
| 9 | 6 | 0.125 | 
| 10 | 5 | 0.104167 | 
| 11 | 4 | 0.083333 | 
| 12 | 3 | 0.0625 | 
| 13 | 2 | 0.041667 | 
| 14 | 1 | 0.020833 | 
| Sum | 48 | 1 | 
The frequency histogram for the probability distribution is

The expected sum of two dices is 8
| Sum(x) | Frequency | P(x) | x*P(x) | 
| 2 | 1 | 0.020833 | 0.041667 | 
| 3 | 2 | 0.041667 | 0.125 | 
| 4 | 3 | 0.0625 | 0.25 | 
| 5 | 4 | 0.083333 | 0.416667 | 
| 6 | 5 | 0.104167 | 0.625 | 
| 7 | 6 | 0.125 | 0.875 | 
| 8 | 6 | 0.125 | 1 | 
| 9 | 6 | 0.125 | 1.125 | 
| 10 | 5 | 0.104167 | 1.041667 | 
| 11 | 4 | 0.083333 | 0.916667 | 
| 12 | 3 | 0.0625 | 0.75 | 
| 13 | 2 | 0.041667 | 0.541667 | 
| 14 | 1 | 0.020833 | 0.291667 | 
| Sum | 48 | 1 | 8 | 
E(x) = x*P(x)
E(x) = 8