In: Finance
| Solution: | ||||
| the value of the stock $38.47 | ||||
| Working Notes: | ||||
| D1 = D0 x (1+g)^1 = $1.29 x (1+.2018)^1 = $1.550322 | ||||
| D2 = D0 x (1+g)^2 = $1.29 x (1+.2018)^2 = $1.86317698 | ||||
| D3 = D0 x (1+g)^3 = $1.29 x (1+.2018)^3 = $2.239166094 | ||||
| D4 = D0 x (1+g)^4 = $1.29 x (1+.2018)^4 = $2.691029812 | ||||
| D5 = D0 x (1+g)^5 = $1.29 x (1+.2018)^5 = $3.234079628 | ||||
| D6 = D0 x (1+g)^5 x (1 +g1) = $1.29 x (1 + 0.0397) x(1+.2018)^5 = $ 3.362472589 | ||||
| Price at the end of 5th year | ||||
| r= cost of capital = Ke is calculated using CAPM | ||||
| r = rf + (rm-rf) x B | ||||
| r = Required return of stock =?? | ||||
| B= Beta of the stock =1.65 | ||||
| rf= risk free rate = 1.31 % | ||||
| (rm - rf) = market risk premium = 5.68% | ||||
| r = rf + (rm-rf) x B | ||||
| r= 1.31% + 5.68% x 1.65 | ||||
| r =10.682% | ||||
| As per constant growth model | ||||
| P5 = D6/(r -constant growth rate) | ||||
| P5= $ 3.362472589 /(0.10682 -0.0397) | ||||
| P5=$50.09643309 | ||||
| Now | ||||
| Current price of the stock | ||||
| A | B | C=A x B | ||
| Details | Year | Cash Flow | PVF @10.682% | Present value | 
| D1 | 1 | 1.550322 | 0.9034893 | 1.40070 | 
| D2 | 2 | 1.86317698 | 0.8162929 | 1.52090 | 
| D3 | 3 | 2.239166094 | 0.7375119 | 1.65141 | 
| D4 | 4 | 2.691029812 | 0.6663341 | 1.79312 | 
| D5 | 5 | 3.234079628 | 0.6020257 | 1.94700 | 
| P5 | 5 | 50.09643309 | 0.6020257 | 30.15934 | 
| The price of the stock will be $ | 38.47 | |||
| Therefore value of share = $38.47 | ||||
| Working Notes: | ||||
| Notes: PVF is calculated @ r% = 1/(1+r%)^n where n is the period for which PVF is calculated. And r is required rate of calculated above 10.682% | ||||
| Please feel free to ask if anything about above solution in comment section of the question. | ||||