In: Finance
The following table summarizes prices of various default-free zero-coupon bonds (expressed as a percentage of the face value):
Maturity (years) | 1 | 2 | 3 | 4 | 5 |
Price (per $100 face value) | $96.17 | $91.82 | $87.19 | $82.33 | $77.32 |
a. Compute the yield to maturity for each bond.
b. Plot the zero-coupon yield curve (for the first five years).
c. Is the yield curve upward sloping, downward sloping, or flat?
YTM of Year 1:
Particulars | Amount |
Maturity price | $ 100.00 |
Current Price | $ 96.17 |
Maturity period | 1 |
YTM = [ Maturity Value / Current Price ] ^ ( 1 / n ) - 1
= [ $ 100 / $ 96.17 ] ^ ( 1 / 1) - 1
= [ 1.0398 ] ^ ( 1 / 1) - 1
= 1.0398 - 1
= 0.0398
I.e 3.98 %
YTM of Year 2:
Particulars | Amount |
Maturity price | $ 100.00 |
Current Price | $ 91.82 |
Maturity period | 2 |
YTM = [ Maturity Value / Current Price ] ^ ( 1 / n ) - 1
= [ $ 100 / $ 91.82 ] ^ ( 1 / 2) - 1
= [ 1.0891 ] ^ ( 1 / 2) - 1
= 1.0436 - 1
= 0.0436
I.e 4.36 %
YTM of Year 3:
Particulars | Amount |
Maturity price | $ 100.00 |
Current Price | $ 87.19 |
Maturity period | 3 |
YTM = [ Maturity Value / Current Price ] ^ ( 1 / n ) - 1
= [ $ 100 / $ 87.19 ] ^ ( 1 / 3) - 1
= [ 1.1469 ] ^ ( 1 / 3) - 1
= 1.0468 - 1
= 0.0468
I.e 4.68 %
YTM of Year 4:
Particulars | Amount |
Maturity price | $ 100.00 |
Current Price | $ 82.33 |
Maturity period | 4 |
YTM = [ Maturity Value / Current Price ] ^ ( 1 / n ) - 1
= [ $ 100 / $ 82.33 ] ^ ( 1 / 4) - 1
= [ 1.2146 ] ^ ( 1 / 4) - 1
= 1.0498 - 1
= 0.0498
I.e 4.98 %
YTM of Year 5:
Particulars | Amount |
Maturity price | $ 100.00 |
Current Price | $ 77.32 |
Maturity period | 5 |
YTM = [ Maturity Value / Current Price ] ^ ( 1 / n ) - 1
= [ $ 100 / $ 77.32 ] ^ ( 1 / 5) - 1
= [ 1.2933 ] ^ ( 1 / 5) - 1
= 1.0528 - 1
= 0.0528
I.e 5.28 %
Part B:
Part C:
Yield Curve is Upward Slopping.