Question

In: Advanced Math

Question H: Let’s keep using the AM-radio style signal from Question G: f(x) = sin(12x) *...

Question H:

Let’s keep using the AM-radio style signal from Question G: f(x) = sin(12x) * sin(x) on [0,2*pi].

It’s okay to use Wolfram Alpha or Desmos to do the following integrals.

i)

Integral

Numeric result

(1/pi)*integral of f(x)*cos(1x) dx from 0 to 2pi

(1/pi)*integral of f(x)*cos(2x) dx from 0 to 2pi

Etc., with cos(3x)

...cos(4x)...

...cos(5x)...

...cos(6x)...

...cos(7x)...

...cos(8x)...

...cos(9x)...

...cos(10x)...

...cos(11x)...

...cos(12x)...

...cos(13x)...

...cos(14x)...

ii) What do you get if you graph 0.5*cos(11x)+-0.5*cos(13x) ?

Solutions

Expert Solution


Related Solutions

3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x...
3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x cos x.
Given f(x) = sin^2(x) and g(x) = sin^4(x) (give exact answers for all parts): a) Plot...
Given f(x) = sin^2(x) and g(x) = sin^4(x) (give exact answers for all parts): a) Plot the functions on the x-interval [0, π]. Find the volume when the region enclosed by the curve and the x-axis is rotated about the line x = π. b) Find the area of the region. 1?b Aa and y = 1? b 1(f(x)2 −g(x)2)dx. Find the x-coordinate of the center of Aa2 mass of the region. In a print statement, explain why this answer...
(abstract algebra) Let F be a field. Suppose f(x), g(x), h(x) ∈ F[x]. Show that the...
(abstract algebra) Let F be a field. Suppose f(x), g(x), h(x) ∈ F[x]. Show that the following properties hold: (a) If g(x)|f(x) and h(x)|g(x), then h(x)|f(x). (b) If g(x)|f(x), then g(x)h(x)|f(x)h(x). (c) If h(x)|f(x) and h(x)|g(x), then h(x)|f(x) ± g(x). (d) If g(x)|f(x) and f(x)|g(x), then f(x) = kg(x) for some k ∈ F \ {0}
Let f(x) = (x − 1)2, g(x) = e−2x, and h(x) = 1 + ln(1 − 2x). (a) Find the linearizations of f, g, and h at  a =...
Let f(x) = (x − 1)2, g(x) = e−2x, and h(x) = 1 + ln(1 − 2x). (a) Find the linearizations of f, g, and h at  a = 0. Lf (x) =    Lg(x) =    Lh(x) =  (b) Graph f, g, and h and their linear approximations. For which function is the linear approximation best? For which is it worst? Explain. The linear approximation appears to be the best for the function  ? f g h since it is closer to  ? f g h for a larger domain than it is to  - Select - f and g g and h f and h . The approximation looks worst for  ? f g h since  ? f g h moves away from L faster...
prove using the definition of derivative that if f(x) and g(x) is differentiable than (f'(x)g(x) -...
prove using the definition of derivative that if f(x) and g(x) is differentiable than (f'(x)g(x) - f(x)g'(x))/g^2(x)
1. For the function f(x)=x2−36 evaluate f(x+h). f(x+h)= 2. Let f(x)=3x+4,g(x)=9x+12, and h(x)= 9x^2+ 24x+16. evaluate...
1. For the function f(x)=x2−36 evaluate f(x+h). f(x+h)= 2. Let f(x)=3x+4,g(x)=9x+12, and h(x)= 9x^2+ 24x+16. evaluate the following: a. (fg)(3)= b. (f/g) (2)= c. (f/g) (0)= d.(fh)(-1)= 3. Let f(x)=2x-1, g(x)=x-3, and h(x) =2x^2-7x+3. write a formula for each of the following functions and then simplify a. (fh) (x)= b. (h/f) (x)= c. (h/g) (x)= 4.Let f(x)=5−x and g(x)=x^3+3 find: a. (f∘g)(0)= b.(g∘f)(0)= c. (f∘g)(x)= d. (g∘f)(x)= 5. Let f(x)=x^2+5x and g(x)=4x+5 find: a. (f∘g)(x)= b. (g∘f)(x)= c. (f∘g)(0)= d....
F(x)=g(x)*h(x) = 4x3-2x2+3x-1 solution
F(x)=g(x)*h(x) = 4x3-2x2+3x-1 solution
Use f(x) = ?2x, g(x) = square root of x and h(x) = |x| to find...
Use f(x) = ?2x, g(x) = square root of x and h(x) = |x| to find and simplify expressions for the following functions and state the domain of each using interval notation. a . (h ? g ? f)(x) b. (h ? f ? g)(x) (g ? f ? h)(x)
if f(x) = -5x^2 sin(5x) and g(x) = x^2 -3x +9 are defined over the interval...
if f(x) = -5x^2 sin(5x) and g(x) = x^2 -3x +9 are defined over the interval (2,4) write the full MATLAB commands to plot the two functions above two functions on the same set of axes 2 find the x and y coordinate of all points of intersections (x,y) that you can clearly see between the two graphs. Round up to 4 decimal
Given, op: (λ(n) (λ(f) (λ(x) (((n (λ(g) (λ(h) (h (g f))))) (λ(u) x)) (λ(u) u))))) zero:...
Given, op: (λ(n) (λ(f) (λ(x) (((n (λ(g) (λ(h) (h (g f))))) (λ(u) x)) (λ(u) u))))) zero: (λ(f) (λ(x) x)) one: (λ(f) (λ(x) (f x))) two: (λ(f) (λ(x) (f (f x)))) three: (λ(f) (λ(x) (f (f (f x))))) i. (4 pt) What is the result of (op one)? ii. (4 pt) What is the result of (op two)? iii. (4 pt)What is the result of (op three)? iv. (3 pt) What computation does op perform?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT