In: Chemistry
The most important commercial process for generating hydrogen gas is the water-gas shift reaction: CH4(g) + H2O(g) → CO(g) + 3H2(g)
a) Use tabulated thermodynamic data to find ΔG° for this reaction at the standard temperature of 25°C.
b) Now calculate ΔG°1100 for this process when it occurs at 1100 K.
a) Enthalpy of Reaction
[1ΔHf(CO (g)) + 3ΔHf(H2 (g))] -
[1ΔHf(CH4 (g methane)) + 1ΔHf(H2O (g))]
[1(-110.54) + 3(0)] - [1(-74.85) + 1(-241.82)] = 206.13 kJ
206.13 kJ (endothermic)
Entropy Change
[1ΔSf(CO (g)) + 3ΔSf(H2 (g))] -
[1ΔSf(CH4 (g methane)) + 1ΔSf(H2O (g))]
[1(197.9) + 3(130.59)] - [1(186.27) + 1(188.72)] = 214.68 J/K
214.68 J/K (increase in entropy)
Free Energy of Reaction (at 298 K)
From ΔGf° values:
[1ΔGf(CO (g)) + 3ΔGf(H2 (g))] -
[1ΔGf(CH4 (g methane)) + 1ΔGf(H2O (g))]
[1(-137.28) + 3(0)] - [1(-50.84) + 1(-228.59)] = 142.15 kJ
142.15 kJ (nonspontaneous)
From ΔG = ΔH - TΔS:
142.12 kJ (nonspontaneous)
b)Use the equation: delta-G = -RT ln K
thus, K = e^(-delta-G/(RT))
T = 1100 K, R = 8.314J/K.mol, and value of delta-G = 142.12 kJ
K = e^(-142120J/8.314J/K.mol x 1100 K)
= 1.78 x 10^-7