In: Computer Science
1. For each of the following propositions construct a truth
table and indicate whether it is a tautology (i.e., it’s always
true), a contradiction (it’s never true), or a contingency (its
truth depends on the truth of the variables). Also specify whether
it is a logical equivalence or not. Note: There should be a column
for every operator. There should be three columns to show work for
a biconditional.
a) (P Λ ¬Q) ⇔ ¬(P ⇒ Q)
b) (¬? V¬?) ⇔ ¬(P Λ Q)
c) (P V Q) Λ ( ¬(? Λ Q) Λ (¬?))
d) (P ⇒ (Q Λ R)) ⇔ ((P ⇒ Q) Λ (Q ⇒ R))
e) (P ⇒ (Q ⇒ R)) ⇔ ((P ⇒ Q) ⇒ R) f) ((P V R) ⇒ (Q V S)) ⇒ ((P⇒ Q) Λ (R ⨁ S))
with biconditional and There should be a column for every operator