Question

In: Statistics and Probability

A small micro-loan bank has 1000 loan customers. If the total annual loan repayments made by...

A small micro-loan bank has 1000 loan customers. If the total annual loan repayments made by an individual is a random variable with mean $850 and standard deviation $900, approximate the probability that the average total annual repayments made across all customers is greater than $865.

Solutions

Expert Solution

Solution :

Given that,

mean = = $850

standard deviation = =$900

n=100

= =$850

= / n = 900 / 1000 = 28.4605

P( >$865 ) = 1 - P( < 865)

= 1 - P[( - ) / < (865-850) / 28.4605]

= 1 - P(z <0.53 )

Using z table

= 1 - 0.7019

= 0.2981

probability= 0.2981


Related Solutions

A loan of $100,000 is made today. This loan will be repaid by 10 level repayments,...
A loan of $100,000 is made today. This loan will be repaid by 10 level repayments, followed by a final smaller repayment, i.e., there are 11 repayments in total. The first of the level repayments will occur exactly 2 years from today, and each subsequent repayment (including the final smaller repayment) will occur exactly 1 year after the previous repayment. Explicitly, the final repayment will occur exactly 12 years from today. If the interest being charged on this loan is...
A loan of $100,000 is made today. This loan will be repaid by 10 level repayments,...
A loan of $100,000 is made today. This loan will be repaid by 10 level repayments, followed by a final smaller repayment, i.e., there are 11 repayments in total. The first of the level repayments will occur exactly 2 years from today, and each subsequent repayment (including the final smaller repayment) will occur exactly 1 year after the previous repayment. Explicitly, the final repayment will occur exactly 12 years from today. If the interest being charged on this loan is...
A loan of $100,000 is made today. The borrower will make equal repayments of $918 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $918 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios (EXCEL HIGHLY REGARDED), calculate the interest rate being charged on this loan, expressed as a nominal annual rate compounding monthly. Give your answer as a percentage to 2 decimal places. (a) The loan is fully repaid exactly...
A loan of $100,000 is made today. The borrower will make equal repayments of $2791.92 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $2791.92 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate in percentage: (b) The term of the loan is unknown but it is known that the loan outstanding 2 years later equals...
A loan of $100,000 is made today. The borrower will make equal repayments of $975 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $975 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate compounding monthly. Give your answer as a percentage to 2 decimal places. (a) The loan is fully repaid exactly after 180 monthly...
A loan of $100,000 is made today. The borrower will make equal repayments of $1357 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $1357 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate in percentage. Give your answer as a percentage to 2 decimal places. (b) The term of the loan is unknown but it...
A loan of $100,000 is made today. The borrower will make equal repayments of $898 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $898 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate compounding monthly. Give your answer as a percentage to 2 decimal places. (a) The loan is fully repaid exactly after 180 monthly...
A loan of $100,000 is made today. The borrower will make equal repayments of $3070.83 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $3070.83 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate in percentage: (b) The term of the loan is unknown but it is known that the loan outstanding 2 years later equals...
A loan of $100,000 is made today. The borrower will make equal repayments of $3418.16 per...
A loan of $100,000 is made today. The borrower will make equal repayments of $3418.16 per month with the first payment being exactly one month from today. The interest being charged on this loan is constant (but unknown). For the following two scenarios, calculate the interest rate being charged on this loan, expressed as a nominal annual rate in percentage: (a) The loan is fully repaid exactly after 33 monthly repayments, i.e., the loan outstanding immediately after 33 repayments is...
Nikita takes out a 10-year loan. The loan is repaid by making 10 annual repayments at...
Nikita takes out a 10-year loan. The loan is repaid by making 10 annual repayments at the end of each year. The first loan repayment is equal to X, with each subsequent repayment 10.16% greater than the previous year’s repayment. The annual effective interest rate being charged on the loan is 8%. The amount of interest repaid during the first year is equal to 892.20. Calculate X. a.1100 b.1150 c.1200 d.1250 e.1300
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT