Consider the helix
r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t).
Compute, at t=π/6
A. The unit tangent vector T=T= ( , , )
B. The unit normal vector N=N= ( , , )
C. The unit binormal vector B=B= ( , , )
D. The curvature κ=κ=
Given r(t) = <2 cos(t), 2 sin(t), 2t>. • What is the arc
length of r(t) from t = 0 to t = 5. SET UP integral but DO NOT
evaluate • What is the curvature κ(t)?
Consider the vector function given below.
r(t) =
2t, 3 cos(t), 3 sin(t)
(a) Find the unit tangent and unit normal vectors T(t) and
N(t).
T(t) =
N(t) =
(b) Use this formula to find the curvature.
κ(t) =
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t,
cos(4t), sin(8t) >, use the formula below to find the given
derivative.
d/(dt)[u(t)* v(t)] =
u'(t)* v(t) +
u(t)* v'(t)
d/(dt)[u(t) x v(t)] =
<.______ , _________ , _______>