In: Statistics and Probability
The length of a species of fish is to be represented as a function of the age (measured in days) and water temperature (degrees Celsius). The fish are kept in tanks at 25, 27, 29 and 31 degrees Celsius. After birth, a test specimen is chosen at random every 14 days and its length measured.
| 
 Age  | 
 Temp  | 
 Length  | 
|
| 
 1  | 
 14  | 
 25  | 
 620  | 
| 
 2  | 
 28  | 
 25  | 
 1,315  | 
| 
 3  | 
 41  | 
 25  | 
 2,120  | 
| 
 4  | 
 55  | 
 25  | 
 2,600  | 
| 
 5  | 
 69  | 
 25  | 
 3,110  | 
| 
 6  | 
 83  | 
 25  | 
 3,535  | 
| 
 7  | 
 97  | 
 25  | 
 3,935  | 
| 
 8  | 
 111  | 
 25  | 
 4,465  | 
| 
 9  | 
 125  | 
 25  | 
 4,530  | 
| 
 10  | 
 139  | 
 25  | 
 4,570  | 
| 
 11  | 
 153  | 
 25  | 
 4,600  | 
| 
 12  | 
 14  | 
 27  | 
 625  | 
| 
 13  | 
 28  | 
 27  | 
 1,215  | 
| 
 14  | 
 41  | 
 27  | 
 2,110  | 
| 
 15  | 
 55  | 
 27  | 
 2,805  | 
| 
 16  | 
 69  | 
 27  | 
 3,255  | 
| 
 17  | 
 83  | 
 27  | 
 4,015  | 
| 
 18  | 
 97  | 
 27  | 
 4,315  | 
| 
 19  | 
 111  | 
 27  | 
 4,495  | 
| 
 20  | 
 125  | 
 27  | 
 4,535  | 
| 
 21  | 
 139  | 
 27  | 
 4,600  | 
| 
 22  | 
 153  | 
 27  | 
 4,600  | 
| 
 23  | 
 14  | 
 29  | 
 590  | 
| 
 24  | 
 28  | 
 29  | 
 1,305  | 
| 
 25  | 
 41  | 
 29  | 
 2,140  | 
| 
 26  | 
 55  | 
 29  | 
 2,890  | 
| 
 27  | 
 69  | 
 29  | 
 3,920  | 
| 
 28  | 
 83  | 
 29  | 
 3,920  | 
| 
 29  | 
 97  | 
 29  | 
 4,515  | 
| 
 30  | 
 111  | 
 29  | 
 4,520  | 
| 
 31  | 
 125  | 
 29  | 
 4,525  | 
| 
 32  | 
 139  | 
 29  | 
 4,565  | 
| 
 33  | 
 153  | 
 29  | 
 4,566  | 
| 
 34  | 
 14  | 
 31  | 
 590  | 
| 
 35  | 
 28  | 
 31  | 
 1,205  | 
| 
 36  | 
 41  | 
 31  | 
 1,915  | 
| 
 37  | 
 55  | 
 31  | 
 2,140  | 
| 
 38  | 
 69  | 
 31  | 
 2,710  | 
| 
 39  | 
 83  | 
 31  | 
 3,020  | 
| 
 40  | 
 97  | 
 31  | 
 3,030  | 
| 
 41  | 
 111  | 
 31  | 
 3,040  | 
| 
 42  | 
 125  | 
 31  | 
 3,180  | 
| 
 43  | 
 139  | 
 31  | 
 3,257  | 
| 
 44  | 
 153  | 
 31  | 
 3,214  | 
| 
 A. Is there evidence of collinearity between the independent variables? 
 B. What proportion of the variation in the response variable is explained by the regression? 
 C. The F statistic indicates that: 
 D. The t-test of significance indicates that: 
 E. The t-test of significance indicates that (same question but choose the correct answer): 
 F. Assuming you ran the regression correctly, plot the residuals (against Y-hat). The plot shows that: 
 G. REGRESSION. Which of the following types of transformation may be appropriate given the shape of the residual plot? 
 G. REGRESSION. This type of dataset is best described as a ____ and a residual problem common with this type of data is ___ 
  | 
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a)
| Age | Temp | Length | |
| Age | 1 | ||
| Temp | 0 | 1 | |
| Length | 0.879116 | -0.18112 | 1 | 
Yes, Age and length have a high correlation
b)
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.897579068 | |||||
| R Square | 0.805648183 | |||||
| Adjusted R Square | 0.796167607 | |||||
| Standard Error | 599.9975172 | |||||
| Observations | 44 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 2 | 61184242.95 | 30592121.48 | 84.97881851 | 2.60655E-15 | |
| Residual | 41 | 14759877.84 | 359997.0206 | |||
| Total | 43 | 75944120.8 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 3904.266017 | 1149.044334 | 3.397837579 | 0.001522221 | 1583.723908 | 6224.808125 | 
| Age | 26.24068177 | 2.055092802 | 12.76861159 | 7.11414E-16 | 22.09033765 | 30.39102588 | 
| Temp | -106.4136364 | 40.45182435 | -2.630626382 | 0.011951331 | -188.107753 | -24.71951975 | 
R^2 = 0.8056
hence about 81 %
c)
The regression, as a whole, is statistically significant
d)
Age of fish contributes information in the prediction of length of
fish
e)
Water temperature is an important explanatory variable in the
model