In: Statistics and Probability
An engineer has carefully measured the spacing between
anchor bolts (in mm) as:
19 23 21 21
19 13 26 15
30 30 17 24
20 16 24 20
Find:
a. The 90 percent CI for µ
b. The 80 percent CI for µ
c. The 99 percent CI for µ assuming σ = 4.1 mm is known
= (19 + 23 + 21 + 21 + 19 + 13 + 26 + 15 + 30 + 30 + 17 + 24 + 20 + 16 + 24 + 20)/16 = 21.75
S = sqrt(((19 - 21.75)^2 + (23 - 21.75)^2 + (21 - 21.75)^2 + (21 - 21.75)^2 + (19 - 21.75)^2 + (13 - 21.75)^2 + (26 - 21.75)^2 + (15 - 21.75)^2 + (30 - 21.75)^2 + (30 - 21.75)^2 + (17 - 21.75)^2 + (24 - 21.75)^2 + (20 - 21.75)^2 + (16 - 21.75)^2 + (24 - 21.75)^2 + (20 - 21.75)^2)/15) = 5.2345
A) At 90% confidence interval the critical value is t* = 1.753
The 90% confidence interval for is
+/- t* * s/
= 21.75 +/- 1.753 * 5.2345/
= 21.75 +/- 2.294
= 19.456, 24.044
B) At 80% confidence interval the critical value is t* = 1.341
The 80% confidence interval for is
+/- t* * s/
= 21.75 +/- 1.341 * 5.2345/
= 21.75 +/- 1.755
= 19.995, 23.505
C) At 99% confidence interval the critical value is z0.005 = 2.58
The 99% confidence interval for is
+/- z0.005 *
= 21.75 +/- 2.58 * 4.1/
= 21.75 +/- 2.6445
= 19.1055, 24.3945