Question

In: Statistics and Probability

anova stats questions 1. If the treatment Sum of Squares is 400, and k=5, what is...

anova stats questions

1. If the treatment Sum of Squares is 400, and k=5, what is the treatment variance?

2. For three conditions with five scores in each condition, what is dftotal?

3. What is the table value for F(11,46) when alpha = .05?

4. What is the lowest possible value for the F statistic?

5. Given: F(2,25). What is F(crit) for alpha = .01?

6. Given: F(5,25). What is k?

7. Given: F(1,25). What is N?

Solutions

Expert Solution

1)   Treatment Sum of Squares = 400                      
   k = 5                      
   Treatment Variance = Treatment Sum of Squares / (k - 1)                      
       = 400 / (5 -1)                  
       = 100                  
   Treatment Variance = 100                      
                          
2)   Number of conditions = 3                      
   Number of scores in each condition = 5                      
   Thus, total scores = 3 x 5 = 15                      
   Degrees of Freedom Total = 15 - 1 = 14                      
   dfTotal = 14                      
                          
3)   alpha = .05                      
   F(11,46)                       
   We use Excel function F.INV.RT to find the critical value of F                      
   F(11,46) for alpha = 0.05                      
   = F.INV.RT(0.05, 11, 46)                      
   = 2.0039                      
   Table value for F(11, 46) when alpha = .05 = 2.0039                     
                          
4)   In ANOVA, the F-statistic is the ratio of Mean Sum of Squares                      
   The mean sum of squares will always be greater than 0                      
   Hence the F-statistic will always be positive                      
   Although, a value close to 0 indicate violations of the assumptions that ANOVA depends on          
   but theoretically the lowest value possible for the F statistic = 0                      

                          
5)   alpha = .01                      
   F(2,25)                       
   We use Excel function F.INV.RT to find the critical value of F                      
   F(2,25) for alpha = 0.01                      
   = F.INV.RT(0.01, 2, 25)                      
   = 5.56997                      
   F-crit for F(2, 25) when alpha = .01 = 5.56997                     
                          
6)   F(5,25)                      
   implies the treatment degrees of freedom = 5                      
   The treatment degrees of freedom = k - 1                      
   Thus k = 5 + 1 = 6                      
   k = 6                     
                          
7)   F(1,25)                      
   implies the treatment degrees of freedom = 1                      
   and the within degrees of freedom = 25                      
   Total degrees of freedom = 1 + 25 = 26                      
   Total degrees of freedom is also N - 1                      
   N - 1 = 26                      
   N = 27                    


Related Solutions

1)With​ two-way ANOVA, the total sum of squares is portioned in the sum of squares for​...
1)With​ two-way ANOVA, the total sum of squares is portioned in the sum of squares for​ _______. 2) A​ _______ represents the number of data values assigned to each cell in a​ two-way ANOVA table. a)cell b) Block c)replication D)level 3.) True or false: In a​ two-way ANOVA​ procedure, the results of the hypothesis test for Factor A and Factor B are only reliable when the hypothesis test for the interaction of Factors A and B is statistically insignificant. 4.)Randomized...
5. Compute the treatment Sum of Squares for the data presented in the table below. Here...
5. Compute the treatment Sum of Squares for the data presented in the table below. Here there are 3 observations in cell 1 and cell 2, but only 2 in cell 3.  (It certainly can happen). COMPUTE ONLY THE SUM of SQUARES FOR TREATMNET Treatment 1 Treatment 2 Treatment 3 Measurements 4, 8, 6 10, 10, 13 8, 5 Grand Average Averages 6 11 6.5 =   8 SS Treatment  = 6.  In the following table, enter all data listed above in question 5, to...
Suppose the Total Sum of Squares (SST) for a completely randomzied design with k=5 treatments and...
Suppose the Total Sum of Squares (SST) for a completely randomzied design with k=5 treatments and n=25 total measurements is equal to 450 In each of the following cases, conduct an FF-test of the null hypothesis that the mean responses for the 5 treatments are the same. Use α=0.05. (a) The Treatment Sum of Squares (SSTR) is equal to 360 while the Total Sum of Squares (SST) is equal to 450. The test statistic is F= The critical value is...
A.(4) Obtain the ANOVA table that decomposes the regression sum of squares into extra sums of...
A.(4) Obtain the ANOVA table that decomposes the regression sum of squares into extra sums of squares associated with X2 and with X1, given X2. B.(6) Test whether X1 can be dropped from the regression model given thatX2 is retained. Use the F* test statistic and level of significance 0.05. State the alternatives, decision rules, and conclusion. What is the p-value of the test? C.(5) Obtain and present the standardized regression coefficients. What do these indicate about the relative contributions...
A.(4) Obtain the ANOVA table that decomposes the regression sum of squares into extra sums of...
A.(4) Obtain the ANOVA table that decomposes the regression sum of squares into extra sums of squares associated with X2 and with X1, given X2. B.(6) Test whether X1 can be dropped from the regression model given thatX2 is retained. Use the F* test statistic and level of significance 0.05. State the alternatives, decision rules, and conclusion. What is the p-value of the test? C.(5) Obtain and present the standardized regression coefficients. What do these indicate about the relative contributions...
You are given an ANOVA table below with some missing entries. Source Variation Sum of Squares...
You are given an ANOVA table below with some missing entries. Source Variation Sum of Squares Degrees of Freedom Mean Square F Between Treatments 3 1198.8 Between Blocks 5040 6 840 Error 5994 18 Total 27 ​ a. State the null and alternative hypotheses. b. Compute the sum of squares due to treatments. c. Compute the mean square due to error. d. Compute the total sum of squares. e. Compute the test statistic F. f. Test the null hypothesis stated...
ANOVA Essay Mark (%)   Sum of Squares df Mean Square F Sig. Between Groups 1619.229 3...
ANOVA Essay Mark (%)   Sum of Squares df Mean Square F Sig. Between Groups 1619.229 3 539.743 56.767 .000 Within Groups 389.831 41 9.508 Total 2009.060 44 Next, in your own words write out a one-tail hypothesis regarding your One-Way ANOVA model. The one tail hypothesis is that there is a significant difference in mean scores between Essay mark and grade level. The null hypothesis hypothesis is that there is no significant difference between the essay mark and grade level....
Complete the following two-way ANOVA table. Use α=0.05α=0.05. Source Degrees of Freedom Sum of Squares Mean...
Complete the following two-way ANOVA table. Use α=0.05α=0.05. Source Degrees of Freedom Sum of Squares Mean Square F P−P−value Row 3 126.98 Column 4 37.49 Interaction 380.82    Error 60 Total 1278.94
Using C++, find the sum of the squares of the integers from 1 to MySquare, where...
Using C++, find the sum of the squares of the integers from 1 to MySquare, where MySquare is input by the user. Be sure to check that the user enters a positive integer.
1. What is the difference between the “Between Treatment” sources in the One-Way ANOVA compared to...
1. What is the difference between the “Between Treatment” sources in the One-Way ANOVA compared to the Two-Way ANOVA? 2. Explain how and why the numerators changes when calculating different F-statistics in a Two-Way ANOVA.. 3. Explain why the denominator does not change when calculating different F-statistics in a Two-Way ANOVA.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT