In: Statistics and Probability
Consider the following time series data.
Week | 1 | 2 | 3 | 4 | 5 | 6 |
Value | 18 | 13 | 17 | 12 | 17 | 15 |
a. develop the three-week moving average forecasts for this time series. Compute MSE and a forecast for week 7 (to 2 decimals if necessary).
b. use = 0.2 to compute the exponential smoothing forecasts for the time series. Compute MSE and a forecast for week 7 (to 2 decimals).
c. use a smoothing constant of =0.4 to compute the MSE (to 2 decimals).
a)
Time period | Actual Value(A) | Moving avg. Forecast(F) | Forecast error E=|A-F| | Squared Forecast Error |
1 | 18 | |||
2 | 13 | |||
3 | 17 | |||
4 | 12 | 16.00 | 4.00 | 16.00 |
5 | 17 | 14.00 | 3.00 | 9.00 |
6 | 15 | 15.33 | 0.33 | 0.11 |
Total | 7.33 | 25.11 | ||
Average | 2.44 | 8.37 | ||
MAD | MSE | |||
MSE = | 8.37 | |||
forecast for week 7 = | 14.67 |
b)
for exponential smoothing: next period forecast =α*last period actual+(1-α)*last period forecast |
Time period | Actual Value(A) | Forecast(F) | Forecast error E=A-F | Squared Forecast Error |
1 | 18 | |||
2 | 13 | 18.00 | 5.00 | 25.00 |
3 | 17 | 17.00 | 0.00 | 0.00 |
4 | 12 | 17.00 | 5.00 | 25.00 |
5 | 17 | 16.00 | 1.00 | 1.00 |
6 | 15 | 16.20 | 1.20 | 1.44 |
Total | 12.20 | 52.44 | ||
Average | 2.44 | 10.49 | ||
MAD | MSE | |||
MSE = | 10.49 | |||
forecast for week 7 = | 15.96 |
c)
Time period | Actual Value(A) | Forecast(F) | Forecast error E=A-F | Squared Forecast Error |
1 | 18 | |||
2 | 13 | 18.00 | 5.00 | 25.00 |
3 | 17 | 16.00 | 1.00 | 1.00 |
4 | 12 | 16.40 | 4.40 | 19.36 |
5 | 17 | 14.64 | 2.36 | 5.57 |
6 | 15 | 15.58 | 0.58 | 0.34 |
Total | 13.34 | 51.27 | ||
Average | 2.67 | 10.25 | ||
MAD | MSE | |||
MSE = | 10.25 |