In: Statistics and Probability
Construct a confidence interval for p1−p2 at the given level of confidence. x1= 396, n1= 503, x2= 424, n2= 587, 95% confidence
The researchers are __?__% confident the difference between the two population proportions,p1−p2, is between __?__and __?__.
(Use ascending order. Type an integer or decimal rounded to three decimal places as needed.)
sample #1   ----->   sample 1
first sample size,     n1=   503
number of successes, sample 1 =     x1=  
396
proportion success of sample 1 , p̂1=  
x1/n1=   0.7873
      
sample #2   ----->   sample 2
second sample size,     n2 =    587
number of successes, sample 2 =     x2 =
   424
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.7223
level of significance, α =   0.05  
           
Z critical value =   Z α/2 =   
1.960   [excel function: =normsinv(α/2)  
   
          
       
Std error , SE =    SQRT(p̂1 * (1 - p̂1)/n1 + p̂2 *
(1-p̂2)/n2) =     0.0260  
       
margin of error , E = Z*SE =    1.960  
*   0.0260   =   0.0509
          
       
confidence interval is       
           
lower limit = (p̂1 - p̂2) - E =    0.065  
-   0.0509   =   0.0141
upper limit = (p̂1 - p̂2) + E =    0.065  
+   0.0509   =   0.1159
          
       
so, confidence interval is (   0.0141   < p1
- p2 <   0.1159   )  
The researchers are 95% % confident the difference between the two population proportions,p1−p2, is between 0.014 and 0.116.