Question

In: Statistics and Probability

Let XiXi for i=1,2,3,…i=1,2,3,… be a random variable whose probability distribution is Poisson with parameter λ=9λ=9....

Let XiXi for i=1,2,3,…i=1,2,3,… be a random variable whose probability distribution is Poisson with parameter λ=9λ=9. Assume the Xi are independent. Note that Poisson distributions are discrete.

Let Sn=X1+⋯+Xn.

To use a Normal distribution to approximate P(550≤S64≤600), we use the area from a lower bound of __ to an upper bound of __ under a Normal curve with center (average) at __ and spread (standard deviation) of __ .

The estimated probability is __

Solutions

Expert Solution


Related Solutions

Let Y denote a random variable that has a Poisson distribution with mean λ = 6....
Let Y denote a random variable that has a Poisson distribution with mean λ = 6. (Round your answers to three decimal places.) (a) Find P(Y = 9). (b) Find P(Y ≥ 9). (c) Find P(Y < 9). (d) Find P(Y ≥ 9|Y ≥ 6).
Let Y denote a random variable that has a Poisson distribution with mean λ = 3....
Let Y denote a random variable that has a Poisson distribution with mean λ = 3. (Round your answers to three decimal places.) (a) Find P(Y = 6) (b) Find P(Y ≥ 6) (c) Find P(Y < 6) (d) Find P(Y ≥ 6|Y ≥ 3).
Let p(y) denote the probability function associated with a Poisson random variable with mean λ. Show...
Let p(y) denote the probability function associated with a Poisson random variable with mean λ. Show that the ratio of successive probabilities satisfies (p(y)/p(y-1)) = ( λ /y), for y=1,2,...
For the Poisson Distribution a. Is λ×T a parameter of position, scale, shape or a combination?...
For the Poisson Distribution a. Is λ×T a parameter of position, scale, shape or a combination? Explain. b. We can treat “λ×T” as a single parameter, but they actually represent two parameters: λ and T. Say you stand by the side of the road and count the number of cars that pass by you in one minute. After repeating this process 10 times you find the average number of cars that pass in 10 minutes. In this case, what is...
The demand for a replacement part is a random variable having a Poisson probability distribution with...
The demand for a replacement part is a random variable having a Poisson probability distribution with a mean of 4.7. If there are 6 replacement parts in stock, what is the probability of a stock-out (i.e., demand exceeding quantity on hand)?
Suppose X1, X2, . . ., Xn are iid Poisson random variables with parameter λ. (a)...
Suppose X1, X2, . . ., Xn are iid Poisson random variables with parameter λ. (a) Find the MVUE for λ. (b) Find the MVUE for λ 2
Let X be an exponential random variable with parameter λ, which means that fX(x) = λe^(−λx)...
Let X be an exponential random variable with parameter λ, which means that fX(x) = λe^(−λx) * u(x). (a) For x > 0, find P(X ≤ x). (b) For x2 > x1 > 0, find P(x1 ≤ X ≤ x2). (c) For x > 0, find P(X ≥ x). (d) Segment the positive real line into three equally likely disjoint intervals.
Starting at 9 a.m., students arrive to class according to a Poisson process with parameter λ...
Starting at 9 a.m., students arrive to class according to a Poisson process with parameter λ = 2 (units are minutes). Class begins at 9:15 a.m. There are 30 students. (a) What is the expectation and variance of the number of students in class by 9:15 a.m.? (b) Find the probability there will be at least 10 students in class by 9:05 a.m. (c) Find the probability that the last student who arrives is late. (d) Suppose exactly six students...
4. Let N be a Poisson(λ) random variable. We observe N, say it equals n, we...
4. Let N be a Poisson(λ) random variable. We observe N, say it equals n, we then throw a p-biased coin n times and let X be the number of heads we get. Show that X is a Poisson(pλ) random variable. (You can use the following identity: ∑ ∞ k=0 (y^k)/ k! = e^y .)
The Poisson probability distribution, associated with a waiting line, is characterized by a parameter known as...
The Poisson probability distribution, associated with a waiting line, is characterized by a parameter known as arrival rate. Explain this concept and describe its connections with the management of a waiting line.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT