In: Statistics and Probability
Suppose for a population, ? = 45, ? = 8. A sample of size n = 31 is selected.
a) What is the standard deviation of sample mean? i.e. ?([?(x)]) =
b) What is the z-score of [?(x)] = 41.5?
c)If the sample standard deviation is s = 9, what is the standard error of sample mean? i.e. s.e.([?(x)]) =
d)If the sample standard deviation is s = 9, what is the t-score of [?(x)] = 41.5?
Solution:
Given that,
 = 45
 = 8
n = 31
So,
a ) The standard deviation of sample mean
is  

  
 =  (
/n) = (8/ 
31 ) = 1.4368
The standard deviation of sample mean = 1.4368
b ) X = 41.5
Using z-score formula,
Z = X -  
 / 
Z = 41.5 - 45 / 8
Z = -3.5 / 8
Z = - 0.44
c ) S = 9
The standard error of sample mean is S 
S 
 = (s /n)
S 
 = 9 /  31
S 
 = 1.6164
The standard error of sample mean = 1.6164
d ) S = 9
The t-score is 
 - 
 / S
  
 - 
 / S = 41.5 - 45 /
9
= -3.5 / 9
= - 0.39
The t-score = - 0.39