Question

In: Math

Consider a fruit fly flying a room with velocity v(t) = < -sin(t), cos(t), 1 >...

Consider a fruit fly flying a room with velocity v(t) = < -sin(t), cos(t), 1 >

a. if the z = 1 + 2(pi) is the room's ceiling, where will the fly hit the ceiling?

b. if the temperature in the room is T(z) = 65 + (1/2)z2 how quickly is the temperature increasing for the fly at time t = 2.

c. from the velocity, find the location of the fruit fly at time t if at t = pi the fly is at the point (0, 0, pi)

Solutions

Expert Solution

Given : v(t) = < -sin(t), cos(t), 1>

a) z = 1+ 2(pi)

when z = 1+2(pi), x = cos(2(pi) + 1) and y = sin(2(pi) +1). The fly will hit the ceiling at <0.9919,0.1268,2(pi)+1>

b)

at t = 2, z = 2. thus T'(2) = 2. The temperature is increasing at a rate of 2 units per second.

c)

In option a) since the initial values were not given we took the initial position as the origin and thus the constant of integral as 0. In this case


Related Solutions

If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >,...
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >, use the formula below to find the given derivative. d/(dt)[u(t)* v(t)] = u'(t)* v(t) + u(t)*  v'(t) d/(dt)[u(t) x v(t)] = <.______ , _________ , _______>
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π...
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π Part (a): Find the Cartesian equation of the curve by eliminating the parameter. Also, graph the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. Label any x and y intercepts. Part(b): Find the point (x,y) on the curve with tangent slope 1 and write the equation of the tangent line.
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
Let Zt = U sin(2*pi*t) + V cos(2*pi*t), where U and V are independent random variables,...
Let Zt = U sin(2*pi*t) + V cos(2*pi*t), where U and V are independent random variables, each with mean 0 and variance 1. (a) Is Zt strictly stationary? (b) Is Zt weakly stationary?
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos...
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos t). Find the length of the arc from t = 0 to t = pi. [ Hint: 1 + cosA = 2 cos2 A/2 ]. and the arc length of a parametric
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the...
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t)   =    N(t)   =    (b) Use this formula to find the curvature. κ(t) =
Consider the vector functions ?(?) and ?(?), where ?(?) = 〈? sin ? , ? cos...
Consider the vector functions ?(?) and ?(?), where ?(?) = 〈? sin ? , ? cos ? , ?^2〉, ?(?) = 〈1, −1, 1〉, and ?′(?) = 〈1, 0, −1〉. Define ?(?) = ?(?) × ?(?) and find ?′(?)
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral...
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral x dx−y dy + z^2 dz
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT